
TRS-80

Pocket Computer

Catalog Number 26-3501

CUSTOl\1 MANUFACTURED FOR RADIO SHACK A DIVISION OF TANDY CORPORATION.'

•
Page

• INTRODUCTION... 1
• TABLE OF FUNCTIONS AND STATEMENTS 3
• KEYBOARD .. . 8
• FUNCTIONS OF KEYS .. . 9
• SECOND FUNCTION .. . 13
• MODE 13
• DISPLAY .. . 14
• DISPLAY SYSTEM 16
• INPUTTING DATA 17
• COMPUTATION RANGE 17
• MANUAL CALCULATIONS 18

1. What is a manual calculation? 18
2. For arithmetic calculations .. . 18
3. Power calculations .. . 20
4. Calculations with parentheses 20
5. Scientific functions 21
6. Logic functions .. . 24
7. Calculations using memories 25
8. Successive designation of expressions in manual calculation 25
9. Recall function .. . 26

10. Editing expressions 26
11. Priority of calculations

• PROGRAMMED CALCULATIONS
29 ,,
31 "

1. What is a programmed calculation? 32
2. Writing programs 34
3. Checking stored programs 36
4. Program correction 37
5. Executing programs 39
6. DEBUGing programs .. . 41
7. Defined programs • • • • • • • • • • • • • 42

• VARIABLES .. . 45
1. What is a variable? .. . 45
2. Specifying variables 46
3. Inputting to variables .. . 48
4. Recalling the contents of variables 49

• PROGRAM STATEMENTS .. . 51
1. LET statement .. • . • • • 51
2. IN PUT statement .. • • • 52
3. PRINT statement .. . 54
4. PAUSE statement • .. • • • • • • 57
5. USING statement .. . 57
6. GOTO statement .. • • • • • • 59
7. IF statement • • • • • • • • • • • • 60
8. GOSUB statement, RETURN statement 62

t
9.

10.
11.

FOR statement, NEXT statement 64
STOP statem~nt .. 68
END statement. 68

12. BEEP statement .. 68
13. CLEAR statement ... 68
14. DEGREE, RADIAN, GRAD statements 69
14. AR EAD statement. 69
16. REM statement. 70

• COMMAND STATEMENTS ... 70
1. RUN command ... 70
2. DEBUG command ... 71
3. CONT command . 71
4. LIST command ... 72
5. NEW command ... 73
6. MEM command ... 73

• STATEMENTS FOR OPTIONAL CASSETTE INTERFACE (Cat. No. 26-3503) 74
1. CSA VE (Cassette Save) statement. 74
2. CLOAD (Cassette Load) statement 75
3. CLOAD? (Cassette Load?) statement 75
4. CHAIN statement ... 76
5. PRINT# (Print cross-hatch) statement 78
6. INPUT# (Input cross-hatch) statement 79

• RESERVABLE KEY .. 80
1. Reserve memory for reservable keys . 80
2. Use of reservable keys . 81
3. Checking reserve programs . 83
4. Correction of reserve programs. 83
5. Deleting reserve programs . 84
6. Configuration of reserve programs 84

• ERROR CODES ... 85
• APPENDIX .. 87
• SPECIFICATIONS ... 88
• BATTERY REPLACEMENT .. 89
• CONNECTING THE CASSETTE INTERFACE 90

Replacing the Batteries .. 90
Connecting the Pocket Computer to the Cassette Interface 91
Connecting the Cassette Interface to a Tape Recorder 92

• OPERATING THE CASSETTE INTERFACE AND RECORDER 93
Recording onto Magnetic Tape ... 93
Loading from a Magnetic Tape ... 93
Editing Programs on Magnetic Tape 95
CLOAD 1 statement • . • • • • • • • • • 96
Checking the Program .. 98
Execution of the Program . 99

• SOME SAMPLE USER'S PROGRAMS 101
Notes for entering program listings 102
Biorhythm .. 103
Guess Number Game ... 105
Impedance in a Series Circuit .. 107
Days between Dates .. 109
Random Numbers ... 111
Normal Distribution and Percentile 113

e· INDEX ... 119

--
2
'"',, · INTRODUCTION -: - <: ,, -"' '° ~ '

This new TRS-80 Computer is another "first" from the company which brought you the best
selling, world renowned TRS-80. A truly pocket-sized Computer (not a programmable calculator).
Of course it is an ultra-powerful calculator too . . . And it "speaks" BASIC - - the most common
computer language, and the easiest to learn. You'll soon be impressed by the phenomenal
computing power of this hand-held TRS-80 - - ideal for mathematical, scientific, engineering and
business applications.

FEATURES

• Programmable, with BASIC language.
• 24-digit alphanumeric dot matrix Liquid Crystal Display, enables easy use of BASIC language, or

standard calculator function.
• Program capacity 1424 steps, 26 memories with memory safe guard.
• Reservable and definable key systems. (See page 80 and 42)
• When used with an optional Cassette Interface (26-3503), you can store or recall programs and

data on a cassette tape. (See page 90)

Some Special Notes

Since the Liquid Crystal Display is made of glass material, treat the Computer with care.

Do not put your Pocket Computer in your back pocket - - you may sit on it and break the
LCD display.

To insure trouble-free operation:
1. The Computer should be kept in areas free from extreme temperature changes, moisture and

dust.
2. Use a soft, dry cloth to clean the Computer. Do not use solvents or a wet cloth.
3. If you're not going to use the Computer for an extended period of time, remove the batteries to

avoid possible damage caused by battery leakage.
4. If service is required, use only an authorized Radio Shack Service Center.
5. Keep this Manual for further reference.

Name label
Write your name on the attached name label and stick it on the back of the Computer.

For your own protection and security, we urge you to record the Serial Number of this unit in the
space provided. You'll find the Serial Number on the bottom of the Computer.

Serial Number:-------------

•

-----IMiilliii-------------------------------~ ..
-Where We Are Going ...

,

Since this is such a radically new product and most people won't know how or where to start we
thought it might be helpful to tell you where we are going with the rest of this Manual.

But first - where were coming from! This manual is written assuming at least a little familiarity
with BASIC. You don't have to have hands-on experience, just be familiar with simple concepts of

programming and BASIC. If you are looking for a tead-'em-by-the-hand Manual, this is not it. For
that approach, stop by your Radio Shack store or Computer Center and take a look at some of our
books. Two or three of them start from scratch.

Back to this Manual.

First were going to give you an over-view of the Computer
Keyboard
Functions
Display

Then show you how to use the Computer
Manual Calculations
Programmed Calculations

And then you'll be ready for some
Programming in BASIC

The back of the Manual has some vital information in the Appendices.

A separate Quick Reference Card has alt the information you need for using your TRS-80 Pocket
Computer, but in an extremely abbreviated form.

2

This Table will provide a quick reference for the BASIC Language functions as used by the Pocket
Computer. The Page reference shows the page on which the Function/Statement is discussed.

You can use abbreviations for the Functions and statements as noted.

1. Functions

~ Remember to press the G:] key .
Functions Abbreviations Remarks Ref.

page

SIN SI. sin

21
cos cos Trigonometric functions

TAN TA. tan

ASN AS. sin- 1

ACS AC. cos- 1 Inverse trigonometric functions 21

ATN AT. tan- 1

LN loge X Natural logarithm

}

..
Logarithmic

22 functions
LOG LO. 10910 X Common logarithm

EXP EX. ex Exponential function (Antilogarithm for LN) 22

v' Extraction of square root 22

DMS DM. Dec al to degree/minute/second conversion 22

DEG Degree/minute/second to decimal conversion 22

INT Integer 23

ABS AB. Absolute value 23

SGN SG. Signum 23

3

2. Statements - State- Abbrevia- General forms Remarks Ref.
ments tions page

LET LE. (1) LET [numerical variable] =<expression) LET can be omitted
(assign- (2) LET [Character variable] = "character" (except when 51
ment (3) LET [Character variable] = [Character variable] following an IF
statement) statement}.

INPUT I. (1) INPUT [variable], [variable],··· Input instruction
IN. (2) INPUT "character", [variable], "character", Data is input.
INP. [variable], · · · 52
INPU. (3) INPUT "character"; [variable], "character";

[variable l , · · ·

PRINT P. (1) PRINT (expression) Output instruction.
PR. (2) PR I NT "character" Specified contents
PRI. (3) PRINT [Character variable] are displayed.
PRIN. { < expression > < expression)

(4) PRINT "character" }• { "character" } 54
[Character variable] [Character variable]

{ (expression) {., h ., }
(5) PR I NT "character" · c aracter . •

[Ch . bl l}' [Character variable] ' aracter vana e

... { "character" l
[Character variable] f

PAUSE PA. General forms are the same as those for PR INT statement. Output instruction.
PAU. Specified contents

'
PAUS. are programmed

57 after being displayed
for about 0.85
second.

USING U. (1) USING "j:\: ... :1±,j:\: .. ,j:1:(\" Format designation
us. instruction.
USI. (2) () { PRINT }us1NG "FORMAT" · · · Displaying format
USIN. a PAUSE ' for numerical data

{ PRINT } is designated. 57
(bl USING····

PAUSE '

(3) USING (end of statement) Format designation

r ENT-ER: !colon) is cancelled.
! __________ .• or:

GOTO G. (1) GOTO< expression > Jump instruction.
GO.

GOTO j "character" }
Specified line or 59

GOT. (2)
[Character variable] label is executed.

IF (1) IF (expression) logic operator (expression > Decision instruction.
execution statement Based on conditions

(2) IF (expression > excution statement the program

(3) { "character" } { "character" } branches or con- 60 1
F [Character variable] = [Character variable] tinues execution.

execution statement
(4) IF [Character variable] execute statement

THEN T. Th is statement is defined as a execution statement in an Jump instruction.
TH. IF statement. Used only with
THE. General form is the same as that of GOTO statement. an IF statement. 61

' 4

State- Abbrevia- General forms Remarks Ref.
ments tions page -GOSUB GOS. (1) GOSUB (expression) Subroutine jump

GOSU.
(2) GOSUB { "character" } instruction.

[Character variable] Execution is
shifted to specified 62
line or label, where
subroutine is
executed.

RETURN RE. RETURN Return instruction.

RET. Used after execu-
RETU. tion of a GOSUB

RETUR. (at end of sub- 62
routine) to return
execution to main
program.

FOR F. (1) FOR [numerical variable]= (expression 1) TO Starts FOR loop.

FO. < expression 2 > Used in combina-
(2) FOR [numerical variable] =<expression 1 > TO tion with NEXT

(expression 2) STEP (expression 3) statement. 64
(expression 1) : Initial value
(expression 2): End value

STEP STE. (expression 3) : Increment

NEXT N. NEXT [numerical variable) Ends FOR loop.

NE. This [numerical variable) must correspond to that Used in combina-

NEX. for FOR statement. tion with FOR 64
statement. ·-STOP s. STOP To stop executing -·

ST. program. 68
STO.

END E. END To indicate program

EN. end. 68

BEEP B. BEEP (expression > Beep sound instruc-

BE. tion

BEE. Beep tone is generat-
68 ed as many times as

the number of value
in (expression).

CLEAR CL. CLEAR Data memory clear

CLE. (Possible to execute by manual operation) instruction 68
CLEA. CLEAR ~

DEGREE DEG. DEGREE Angular mode

DEGR. (Possible to execute by manual operation) designation.

DEGRE. DEGREE~ Degree (0) 69
is designated.

RADIAN RA. RADIAN Angular mode

RAD. (Possible to execute by manual operation) designation.

RADI. RADIAN ~ Radian ([rad)) 69
RADIA. is designated.

5

t.
State- Abbrevia- General forms
ments tions

GRAD GR. GRAD
GRA. (Possible to execute by manual operation)

GRAD ~

AREAD A. AREAD [variable]
(auto AR.
read) ARE.

AREA.

REM REM (note)
(remark)

(Command statement) Possible only to execute by manual operation.

RUN R. (1) RUN ~
RU. (2) RUN (expression) ~

(3) RUN j "character"
[Character variable] }~

DEBUG D. The general forms are defined in the same manner as
DE. those for RUN statement.
DEB.
DEBU.

t CONT c. CONT ~
CO.
CON.

LIST L. The general forms are defined in the same manner as
LI. those for RUN statement.

LIS.

NEW NEW ~

MEM M. MEM ~
ME.

6

Remarks

Angular mode
designation.

Grad ([g]) is
designated.

The contents
displayed at start
of definable
program is read
into the specified
[variable] .

To designate non-
execute statement
in program (notes).

Program execute
start instruction.
Effective only in
DEF and RUN
modes.

Debugging start
instruction.
Effective only in
DEF and RUN
modes.

To restart an
interrupted program.
Effective in DEF
and RUN modes.

For listing programs.
Effective in PRO
mode.

In DEF, RUN and
PRO modes,
program memory
and data memory
are completely
cleared.
In RESERVE mode,
reserve memory is
cleared.

Remaining area of
program memory is
displayed
(number of program
steps and fl ex ible
memories).

Ref.
page

69

69

70

70

71

71

72

73

73
I
i
' I _,

...

State- Abbrevia- General forms Remarks Ref.
ments tions

.. page
I I -(Magnetic tape control statement)

CSAVE cs. CSAVE "file name" ~ Program or reserve 74
(cassette CSA. (Possible only by manual operation) program is recorded
save) CSAV. on magnetic tape.

CLOAD CLO. CLOAD "file name" ~ Program or reserve
(cassette CLOA. (Possible only by manual operation) program is trans-
load) ferred from magne- 75

tic tape to the

Computer.

CLOAD? CLO.? CLOAD? "file name" ~ Checks contents of
(cassette CLOA.? (Possible only by manual operation) program or reserve
load?) program with those 75

placed on magnetic

tape.

CHAIN CH. (1) CHAIN "file name" Program recorded
CHA. (2) CHAIN "file name", (expression> on magnetic tape is

CHAI.
(3) CHAIN "file name" \ "character" / read in and then 76

[Character variable] executed.

(To be executed by program)

PRINT# P. # (1) PRINT# "file name" Data memory

PR.# (2) PRINT# "file name"; [Label of variable] contents are

PRI. # (Possible to execute both by program and manual recorded on 78
PRIN. :1:j: operation) magnetic tape.

INPUT# I.# (1) INPUT #"file name" Data recorded on
IN.# (2) INPUT# "file name" ; [Label of variable] magnetic tape is I
INP. # (Possible to execute both by program and manual transferred into 79
INPU. # operation) data memory of

the Computer.

7

Power OFF key

.___-Power ON key

Display

Reservable keys

8

ENTER key
(Executes
calculations or
enters programs)

arithmetic
calculation keys

-
Here is a brief explanation of the main keys. For details, refer to the rest of this Manual.

Key Function

• Use to power-on .
CA/BREAK

@ill • Breaking (temporarily interrupting) the program being executed.

• Clearing the Computer completely . (Reset after error condition.)

[Qffl • Press to power-off .

~ • Secondary functions noted above the keys (such as 1T and A symbols)
are activated.
To obtain pi, press following sequence:

n:
will be displayed. Display shows a ~ at left when a ~ [TI ->7T

shift function is pending.

• In "DEF" mode, press before keying in the predefined function labeled
as A, S, D, etc. (Definable key designation) Example,~ rn

• In "RESERVE" mode, press before activating a key used for labeling a
reserve program. (Reserve key designation) Example, ~ rn

• In "PRO" or "RUN" mode, press before activating a key used for

labeling a reserve program. (Reserve key designation)

Example, ~ rn
[QJ ~ :IJ • Use to enter numbers .

G:J • Enters a decimal point . ..
• Use to designate abbreviations when inputting instructions .

• Use to designate a display format in a USING statement instruction .

(See page 57 .)

~ • Usetoinputexponenb . (This key function is displayed as [E.)

rn ~ ::TI • These alphabetical keys serve to designate instructions .

• Specify variables (A to Z memory)

[ZJ • Use for division instructions .

rn • Use for multiplication instructions .

[£] • Use to input a positive sign for numbers . (Usually omitted.)

• Use for addition instructions .

G • Use to input a negative sign for numbers .

• Use for subtraction instructions .

~ uSJ • Use for power calculation instructions.

• Use to specify the floating decimal point system (exponent display) for

numerical data in USING statement instructions.

~[3] • Use when inputting logical operators, such as <, < =, < >.

9

Key Function

~~ • Use when inputting logical operators, such as >, > =, < >.

@] • In assignment statements, use to assign the content (number or
character) on the right for the variable specified on the left.

• Use when inputting logical operators, such as=,<=,>= .

[I] IT] • Use to input parentheses.
'
~ • Use to extract square root .

~ • Use to provide space when inputting programs or characters. The space
is ignored in programming, executing operations, etc.

~OJ • Use to divide two or more statements in one line.

~CJ • Use with PR I NT statement instructions, to provide multi-display (two

or more values/contents displayed at a time).

• Use with IN PUT statement instructions, to provide pauses in comment .

• Use with PR I NT # statement and IN PUT # statement instructions to
provide pause between the instruction and the variable.

~u] • Use to provide pause between two equations in continuous calculation

sequences.

• Use with PR I NT statement instructions, to provide dual display (two

different values/contents are displayed at a time).

• Use with INPUT statement instructions, to provide pause between com-

t ments or variables.

• Use with CHAIN statement, to provide pause between file and expres-

sion, or between file and label when setting the opening line subsequent

to execution.

~[fil • Use with USING statement, to provide the instruction to define the

display format of numerical data.

• Use with PRINT #and INPUT #statements .

~rn • Use with CLOAD? statement .

~rn • Use when assigning character variables.

~00 • Use to designate and cancel characters.

• Use to specify labels .

~ • Use to change modes (DEF, RUN, PRO, RESERVE).

~ • Use to clear incorrect manual input.

• Use as an instruction to clear the display contents (such as calculation

results).

• Use to reset after error .

[El • Shifts the cursor to the right (press once to advance one position, hold

down for automatic advance)

• Executes playback instructions .

• Recalls cursor (in case it is not displayed during program operation;
recalls to right of colon)

f
10

Key Function

Bl • Shifts cursor to the left .

• For other functions, the same as the CE] key.

~ [ffi!) • Inserts one space (~ appears) of 1-step capacity between the address ~

(N) indicated by the cursor and the preceding address (N-1).

~~ • Deletes the contents of the address (N) indicated by the cursor .

~ • Enters a program line into the Computer .

• Use when writing in programs or reserve programs (function as above) .

• Requests manual calculation or direct execution of a COMMAND
statement by the Computer.

• Enters a restart instruction after inputting data required by an INPUT
statement or after executing a PR I NT statement.

The DJ , [I] and [Qfil keys have the following functions, depending on designated modes, as

well as the state of the Computer.

Mode State DJ [I] [Qfil

Power off -------- To power-on

RUN Program being ~ ~ BREAKs

or executed (program is

DEF temporarily
IN PUT statement being To display program To execute interrupted)
executed line being executed debugging opera- ..

or already tion
PR I NT statement just executed, hold
now executed this key down

Under BREAK To execute the To clear com-
next line pletely

Error condition during To display error- / executing program producing line,
hold this key
down.

PRO (When program line is not being displayed; e.g. such as when changing to PRO mode)

PR I NT statement just To display the Same as left To clear com-

now executed interrupted line pletely

Under BREAK

Error has been cleared To display program Same as left

with any key other line in which the

than the [Qfil key error occurred

11

-

' .• ,· •

t

f

Mode State m DJ [QR]

I

PRO (When program line is being displayed)

To display the To display the To clear com-
preceeding program next program line pletely
line

RESERVE

-------------- ~

• When a letter or symbol is used in quotations (" "), it is to be considered as a character (input or
displayed that way).

• When the A, S, D, F, G, H, J, K, L, =, Z, X, C, V, B, N, M, or SPC keys are pressed, following
the SHFT key,

1. In DEF mode, a program defined with the label of the same character begins execution.
2. In RESERVE mode, a reserve program is recalled or written in.
3. In PRO or RUN mode, the contents reserved by the key is recalled. If nothing is reserved, the

symbol of the key is displayed.
• The ~ key does not function when the Computer is executing a calculation or program.
• If no key entry is made for about 7 minutes the power is automatically turned off (unless a

program operation is pending, etc.).

Two templates are supplied with your Computer. Use them to identify the functional operation
assigned to the reservable keys or defined programs assigned to the definition keys.

Example: Reserved keys (For reservable key information: refer to page 80.)

SIN COS TAN ASN ACS ATN LN LOG

DDDDDDDDDD
RUN NEW MEM INPUT PRINT A*A B*B

DDDDDDDD1~ _ __.1

Example: Program-defined keys (For program-key information defined see page 42.)

SIMPSON S
METHOD

COORDINATF
CONVERSIONS

DDDDDDDDDD
DDDDDD □ D1~ _ __.1

12

You must use the yellow SHFT key to operate the functions printed above each key. When you
press this key, SHFT will appear in the display. If you press this key in error, press it a second time
and SHFT will disappear.

A
Example: @§1 ~ ➔ "A" is entered.

In this Manual, we'll always show the keys' second functions as follows;
A

@§1~ ➔ @§][6]

-

Your TRS-80 Pocket Computer has four modes: DEFinable, RUN, PROgram and RESERVE ,a
program. Set mode by pressing the ~ key. 'W
Definable mode (DEF): The defined program execution mode.

Perform defined program calculations with this mode.

Run mode (RUN): The calculation execution mode.
Perform program or manual calculations with this mode.

Program mode (PRO): The program writing mode.
Enter programs when in this mode.

Reserve program mode (RESERVE): The reserve program writing mode.
Enter reserve programs when in this mode.

The ~ key changes the mode in the following sequence:

.---➔➔ DEF--------RUN---➔ PRO----RESERVE---~

Press ~

13

Your Pocket Computer has a 24-digit dot matrix liquid crystal display.

Display when the power is on or when the mode is changed:

I
Angular symbol (DEG RAD GRAD)

!Mode symbol
I (DEF RUN PRO RESERVE)

~

I
·.·.:• DEG RUN rBattoery indl icator (b~t~eries)

_ are K as ong as this 1s on
~---------------------~

L-Prompt symbol (shows that the Computer is waiting for a key input)

• When you turn on the power the first time after battery replacement, the prompt symbol, DEG
and RUN will appear.

• When you switch it on other times, the Computer will display the prompt symbol, along with the
angular symbol and mode symbol which was last displayed (just before power was turned off,
either with IOFFI or by automatic power-off).

• When you change the Computer program mode (by pressing ~ key), the Computer will
display the prompt symbol, then the existing angular symbol and the new mode symbol.

• To change the angular mode (for trigonometric functions), enter the name of the mode you want
with the alpha keys. E.g. [QJ IT] [QJ [Kl IT] IT]~ for DEG,CKl W [QJ OJ W 00
~ for RAD and [QJ [Kl W [QJ ~ for GRAD mode.

Display when you input an "expression" etc. with the keys.

1. RUN mode:

iIN30*54+139/7+COS63*26_
I DEG RUN • I

2. RESERVE mode:

RAD

Lcursor

RESERVE

Lcursor (indicating the
position of next entry)

• If you input more than 24 characters, the display "rolls" over to the left to provide a space to
display the new input. (A maximum of 80 characters can be entered per line. The characters
which disappear to the left are not "lost", just not being displayed.)

14

Display of recalled ~nformation

1. RUN mode:

lcursor (If the position indicated by the cursor has a character, a block will
alternately flash with the character in that position.)

2. PRO mode:

PRO

--c;ne number (Displays the line number of the program. Refer to page
31)

Display of calculation result

1. Normal Display

2. Scientific notation

DEG

GRAD

-----~----- '--,--'

Mantissa

• Calculation results are always displayed at the right.

Display of Error condition

1. Manual calculation

DEG

·:
J. :: :: :: :: :: ::

LError code

2. Programmed calculation

DEG

.:. : : .. . :

RUN

= :: ::

RUN

I···.· :: ... : ::
. .

.: ... :: :::::::::::::::::

Exponent

n ..
· 1

:: :: .

= ,, ,, ,, ,, ,: I

-.---L LError code ·

°Line number (Displays the line number in which an error is detected.)

15

•

Display of Symbols

Angular symbols
DEG:

RAD:

GRAD:

Mode symbols
DEF:

RUN:

PRO:

RESERVE:

Shift symbol (Appears when the SHFT key is pressed.)

_r:arsymbol

1 Mode symbol

SHFT DEG RAD GRAD DEF RUN PRO RESERVE

Appears when DEGree mode is set.

Appears when RADian mode is set.

Appears when GRAD mode is set.

Appears when the DEFinable mode is set.

Appears when the RUN mode is set.

Appears when the PROgram mode is set.

Appears when the RESERVE mode is set.

• Battery indicator

Battery indicator

The battery indicator is a dot located in the upper right corner of the display. When this dot

dissappears, the batteries must be replaced. See page 89.

Number of input characters

When you enter numbers, characters and instructions into the Computer (via the keyboard)

this data is stored in an input buffer. When you press the ~ key, the Computer executes

the instructions as required.

The input buffer can hold up to a maximum of 80 characters. When you have entered 80
characters into the input buffer (i.e. 80 characters on a "single line") the cursor will flash in

the last display position. Further inputs will merely change this last position.

A manual calculation will not be correctly executed if it contains more than 80 characters

(including ~ key).

This Computer displays a number in the normal manner or with scientific notation system.

Numbers in programmed calculations are displayed according to the designated format, but in

manual calculations, numbers within the following range are displayed in the normal manner, and

other numbers are displayed in scientific notation.

Range of numbers displayed in the normal manner:

-9999999999 ~ X ~ -1 X 10-9

x=O
1 X ,0-9 ~ X ~ 9999999999

• Within the range shown above, if a number can not be displayed in the normal manner the

display is automatically changed over to scientific notation.

Ex. 0.000123456 j 78 ➔ 1.2345678 x ,0-4

A calculation result is displayed in either the normal manner or scientific notation, but it is

stored in the memory in the form of

Ax 108 (1 ~IA I~ 9.999999999, -99 ~ B ~ 99)

or as 0.
16

-:

To input a number to the Calculator, press [±] or G key first to input a sign, and then a
numeric key or the decimal point key. (The operation of the [±] key can be omitted.) To input a
number in the scientific notation system (A x 108), input the mantissa, press the § key and
input the exponent.

Example: -12.345 ➔ G [TI W 0 W W W
6.7 X 108 ➔ W 0 W ~ W

-9.12x ,0-34 ➔ G w 0 CTI w ~ G W w
To input data with a mantissa over 10 digits, the most significant 10 digits will be displayed, but
internal calculations are performed using all the data input.

Example: 1234567898765 ➔ displayed as 1.234567898 x 1012

9.87654321234 ➔ displayed as 9.876543212

0.0000000002345678 ➔ displayed as 2.345678 x 10-10

0.00001234567 ~ 24 ➔ displayed as 1.234567 x 10 19

For the exponent, the last 2 entries are effective.

Example: 3 ~ 123 ➔ displayed as 3 x 1023

4 ~ G 3210 ➔ displayed as 4 x 10-10

More on inputting data when we get to programming.

-

The computing range is -9.999999999 x 1099 to -1 x 10- 99
, 0 and 1 x 10- 99 to 9.999999999 x

1099.

Any calculation results outside of this range will result in an overflow error or 0. (See the
illustration below.)

-9.999999999X 1099 -lXl0-99 0 lXl0-99 9.999999999X 1099

-=.------+---------+---~l----+-----------1-----+=

Error
Computation

range
Regarded

as 0

17

Computation
range Error

\)

•

t

1. What is a manual calculation?

Normally you'll program the Pocket Computer in the PRO mode and execute programs in the

RUN or DEF mode. For problems that don't need programming, you can Input the necessary

data in the RUN (or DEF) mode and obtain immediate answers. This is called the Direct

Execution mode or you might prefer to call it the manual calculation mode.

General form (Expression) ~

Example: 5 W 4 ~

Input an expression and press the ~ key. The Computer will show the answer for the expres
sion.

• Manual calculations given in the following examples are executed in the RUN mode. Set the
Computer to the RUN mode by pressing the ~ key. (The symbol "RUN" will appear on
the display.)

An Expression is composed of the following instructions:

• Constant 0 ~ 9, ·, rr, Exp

• Sign +,
• Arithmetic operator +, -, * (Multiplication), / (Division), /\ (Power)

• Logic operator =, >, <, > =, < =, < >
• Functions SIN, COS, TAN, ASN, ACS, ATN, LN, LOG, EXP, INT, ABS,

SGN, V
• Parenthesis (,)

• Memories A~ Z, A (

An "Expression" can be made by combining these instructions according to a mathematical

formula.

A mathematical formula is defined as an "Expression", even if it is composed only of constants or

memories. (Eg. 12, rr, A, etc).

2. For arithmetic calculations

Addition and subtraction

Example: 7-9+14=
-4.2 + 5 - 12.3 =

Operation

RUN mode

©: 789[±]14

~

[ill G 4.2 w 5 G 12.3

~

7-9+14 -

-4. 2+5-1 2.

18

Display Note

Expression

1 2. Ans.

3 - Expression

-11. 5 Ans.

Multiplication and division

Example:

Operation

[TI] 12 W 24 W 5

~

[TI] 21 ~ 3 rn 4 w 12

Mixed calculation

Example:

Operation

~

[TI] 54 [±] 24.3 ~ 16.49

w 3.4 G 37 .4

~

NOTE: In the BASIC language

* is used for Multiplication
/ is used for Division
IE is used for Exponent

Display

12*24/5_

57. 6
27(E3*4/12_

9000.

Display

54+24. 3*16.49_

54+24. 3*16. 49/3. 4-3 7. 4 -
134. 455

Note

Expression

Ans.

Expression

Ans.

Note

Note that multiplication and division have priority over addition and subtraction (that is, multipli

cation and division functions are performed before addition and subtraction). To control priority
of calculation functions, use parentheses as noted later on in these examples.

When utilizing a displayed result in subsequent calculations.
In each of the above examples, the [TI] key is pressed first. This operation is intended to clear the

preceding operations or the results of calculations.
If you want to use a calculation result for continued calculations start the next calculation without

pressing the [IT] key.

Example (D 3 + 4 = I
0 -5+6 =

Operation

[IT]3 W 4 ~

G

s rn 6

~

The result of (1) is incorporated into the expression (2), thus

calculation 3 + 4 - 5 + 6 = is accomplished with the display of an

intermediate answer.

Display Note

7. The result of G)

7. - } The result of G) , (7) is -
7. -5+6 incorporated into the

- next calculation (2).
8.

- + - * After completing a calculation, 1f you press keys such as [±] , G , W , [lJ
just before inputting another (or further) expression, the preGed ing calculation
result is incorporated as data for the next calculation.

19

------------ -

3. Power calculations

{,>' Example: 4 A 3 =

[ill

3 A3.2* 4 A2.4=
4A3A2=

Operation

4 ~[KJ3

~

3~CKJ3.200
4 ~rn 2.4

~

4 ~[KJ3 ~[KJ2

~

(43=)

(3 3·
2 x 4 '·'=)

(43'=)

4"3_

3"'-3. 2*-

Display

3"3. 2 * 4"2. 4_

936.

4-"3-"2_

64.

9836103

262144.

Note that power calculations have priority over the four arithmetic calculations.

Note

Expression

Ans.

Expression

Ans.

Expression

Ans.

Also note that powers of a negative number do not compute. Th is is due to the calculation
process used by the Pocket Computer.

4. Calculations with parentheses

Calculations can be performed by using the W and CD keys in the same manner as you use
parentheses in mathematical formulas.

Example: (72+ 9)/ 4 * (21 * 168/(7-3)+ 21)=

Operation Display Note

[ill OJ72GJ9CIJw4w (72+9) /4*_

m21wOJ6Bww7 (72+9) /4* (21 * (68/ (7 _

G3CDGJ2[IJCIJ +9) /4* (21 * (68/ (7-3) +2)) -

~ 8079. 75 Ans.

The use of parentheses results in different calculation sequences as follows. Take special care
when multiplying, dividing or extracting square roots.

A+B/C B rA+B ___, /A+B ___, A+-
C

CA+B)/C ---, A+B
C rcA+m - /A+B

A/C*D
AD

✓A*B ___, BIA ---> -
C
A rcA*B) ___, ✓AB A/CC*D)---, -

CD
A

A/B/C B A A*B+C ---, AB+C --->-=-
C BC

A/CB/C) -,A =AC
B B A*CB+C) ___, ACB+C)

C

20

5. Scientific functions

Your TRS-8O Pocket Computer permits functions to be calculated just the same as in standard e
mathematic formulas.

• When performing a functional calculation of a constant or memory, use following form:
SIN 30 or SIN A. In other cases use parentheses such as LN (A*B) or SIN (1r/2).

Angle mode

The angular mode is designated by the following:

Degree mode: [QJ W [gJ [KJ W CT]~ ("DEG" will appear at the top of the display.)

Radian mode: [KJ W [QJ [TI [A] [NJ~ ("RAD" will appear)

Grad mode: [gJ [KJ w [QJ ~ ("GRAD" will appear)

Trigonometric functions (SIN, COS, TAN)

Examples: SIN 30=

cos (,r/4)=

TAN150=

(sin30=) Set the angular mode to "DEG".

(cos¾=) RAD mode

(tan150=) GRAD mode

Operation Display

DEG (r::ITJ rn [gJ !J[] rn rn [Nm)

~ rnrnoo 30

I
SIN30_

~ 0. 5

RAD (DD rn rn rn rn oo ~)

w CQJ rn OJ~ oo cos (,r -

[ZJ 4 [I] cos (,r / 4) _

~ 7. 071067812[E-01

GRAD (w DD rn rn~'
ITJ0000150 TAN150_ -1.

~

Note

"DEG"

SIN 30°

"RAD"

COS f(rad)

"GRAD';·

TAN150u

Inverse trigonometric functions (ASN, ACS, ATN)

Example: ASN-0.5 = (sin- 1(-0.5)=)

ACS (-0.5+0.1)= (cos- 1(-0.5+0.1)=)

A TN (7/3)= (tan- 1Z=)
3

Set angular mode to DEG

Set angular mode to RAD

Set angular mode to GRAD

ASN: Arcsine
ACN: Arccosine
A TN: Arctangent

Operation Display Note

DEG Set DEG

~rnrnooG.s ASN-. 5_ mode

~ -30. (0)

RADQJ w W ITJ G. 5 ACS(-. 5_

rn.1 OJ ACS (-. 5+. 1)
Set RADIAN

- mode

~ 1 . 982313173 (rad)

GRAD OOITJOOOJ7 ATN (7_

[ZJ[I][IJ ATN (7 /3)
Set GRAD

- mode

~ 74. 22378832 (")

-
21

,.

Logarithmic functions (LN, LOG)

Examples: LN7.4= (ln7.4=)

LOG100= (log1Q0=)

Note: In X = logeX : Natural logarithm
log X = log10 X: Common logarithm

Operation Display Note

~ woo 7.4 LN7. 4 -
~ 2. 00148 Ans.

wrnw100 LOG100 -
~ 2. Ans.

Exponential function (EXP)

Example: EXP-13.6= (e -13.6) Note: EXP is anti-logarithm of LN

Operation Display Note

~ wITJITJG 13.6 EXP -13. 6_

~ 1.24049508[E-06 Ans.

Roots

Examples: ✓---73= (ll3=)

✓---✓---256= (//256=V2"56=)

✓ (3*3+4*4)= (✓3 2 +4 2 =)

Operation Display Note

~ l:D73 ✓-73_

~ 8. 544003745 Ans.

l:Dl:D256 ✓- ✓-256 -
~ 4. Ans.

[D[IJ 3@ ✓---(3*-

3GJ4CU4 IT] ✓-(3*3+4*4) -
~ 5. Ans.

Angle conversions (OMS, DEG)

DMS: Decimal degrees ➔ Degrees/minutes/seconds
When converting decimal degrees to degrees/minutes/seconds, the answer is displayed as
follows: integer portion = degrees; 1st and 2nd decimal digits= minutes; 3rd and 4th
digits= seconds; and any remaining decimal digits are decimal degrees.

DEG: Degrees/minutes/seconds ➔ Decimal degrees
To convert an angle given in degrees/minutes/seconds to its decimal equivalent, it must
be entered as integer and decimal numbers as noted above.

Example: Convert 15.4125° to its degree/minute/second equivalent.
Convert 15°24'45" to its decimal equivalent.

22

--
Operation Display Note

~ rn oom 15_4125 OMS 1 5. 4 1 2 5 _

~ 1 5. 2445 15° 24' 45"
[QJ [IJ[Q] 15.2445 DEG1 5. 2445 -

~ 1 5. 4125 15.4125°

Integer (INT)

The integer (INT) function converts numerical values to the next lowest integer value: 12.34
becomes 12.; and -2.45 becomes -3.

Examples: I NT (65/3)=
I NT (-0.3)=

Operation Display Note

[I] 00 ITJ ITJ 65 CZJ 3 [IJ I NT (65/3) _

~ 21.
OJOOITJG.3 I NT-. 3 _

~ -1.

Sign function (SGN)

The SGN function takes the following values for numerical values of X. (That is, it returns a
-1 for all negative values, zero for O and a +1 for all positive values.)

+1 if X > 0
0 if X = 0

-1 ifX<O

Example: SGN (5 - 9)

Operation Display , Note

W CQJ 00 ITJ 5 G 9 OJ SGN (5-9) _

~ -1.

Absolute value (ABS)

The ABS function finds the absolute value I X I of a numerical value X. (In simple terms we
might say it strips the sign from a number.)

Example: ABS (5-9)= (15-91=)

Operation Display Note

rnrnmm 5 G g rn ABS (5-9) _

~ 4.

23

6. Logic functions

(J I These functions return 1 when an expression composed using logic operators (=, >, <, > =, < =
and<>) is true, and O when false. In other words, x o y (O is a logic operator) gives us either a

t

1 or a O depending on the relationship of x and y. l
J,

Logic
operator

* 1 if x=y. =
0 ifx=;icy.

>
1 it x>y
0 if x~y

<
1 it x<y
0 if x~y

>=
1 if x~y
0 if x<y

1 if x~y <=
0 if x>y

<> 1 if X 'F y Note: < > has the same mea ning as *·
0 if X == y

* If you want to use a logical expression relating to contents of a memory (variable name) you

must use the following form: (expression)== [memory/variable name). If you use [memory/

variable name) == (expression) the Computer will treat the statement as a normal assignment

statement; e.g. A = (expression). (Relational equations in IF statements, are not subject to this
exception; i.e. they function normally.)

Examples: (5+8)>(3*4)=
(24/5)<=(2.4* 2)=

Operation Display Note

OJ s rn s rn ~ w (5+8)) _

rn 3 rn 4 rn (5+8) > (3*4) _

~ 1 . Answer

OJ24 [Z] 5 [IJ·~l3J@J (24/5) (=_

OJ 2.4 rn 2 m (24/5) (= (2. 4*2) _

~ 1 . Answer

Notes:
Logical expressions (AND) and (OR) can be executed using the following form of logical computa

tions.

G) Logical OR (logical computation) + (logical computation)

Example: (A< 0) + (A> 8) 1 is returned if A is smaller than O or larger than 8.

(8 > 0) + (C > 0) 1 is returned if 8 or C is larger than O and 2 is returned if
both 8 and C are larger than 0.

Logical AND (logical computation) * (logical computation)

Example: (8 > 1) * (8 < 6) 1 is returned if 8 is larger than 1 and smaller than 6.

24

7. Calculations using memories

The TRS-80 Pocket Computer has two types of data memories: fixed memory (26 in all) and e
flexible memory. In this section we'll give examples of calculations using fixed memories. (For
details, refer to page 45.)

Specifying memories G)
The fixed memories are given labels A through Z (each being specified by the [A] through [TI
keys).

Example: When memory A is loaded with 4 and memory B with 5.

rnrnrnrnrns 12 ~ -

G:J wrnrnrnrn ~ --
1 7.

3.
(
rn @J 4 ~

00@]5~

Specifying memories ®
The fixed memories A through Z can be used as dimension as specified in the form of A ().
This form is used for storing data in a matrix or array.

Example: 00 CO2 [I] ➔ Memory A (2), namely memory B, is specified.

rn rn 2 rn 3 rn ➔ Memory A (5), namely memory E, is specified.

Input to the memories

Numerical values and others are input to the memories in the following forms.

General form

Example:

[memory) @] (expression) ~ -------------~

➔ Loading the answer of 5 * 6 (30)
into memory A

[Y] @] 00 C£J []] ~ ➔ Loading the contents of memory A ·t
plus memory B into memory Y.

00 IT] 26 [I] @J 3 [±] 9 ~ ➔ Loading the answer of 3 + 9 (12)
into memory A (26) (memory Z).

• When the memories are loaded with new data, they are automatically cleared of their previous
contents.

Recalling the memory contents
The memory contents are recalled using the following form.

General form [memory) ~

Example: 00 ~

rnrn 1a rn~
➔ Recalling the contents of memory A

➔ Recalling the contents of memory A (18)
(memory R)

8. Successive designation of expressions in manual calculation

In manual calculations, you can designate and solve two or more expressions in succession by
separating them with a comma. However, the computer will display the result of the final
execution only.

General form (Expression) ~ w (Expression) ~ W (Expression) ~ w
................. ~

25

'

Example: When A=
5

B=
87

C=-
12

- solve A*B/C=
12 - 4 ' 24 ' 7 + 8 '

Operation Display Note

w@5CZJC:012G4CIJ A=5/ (1 2-4) -
~u][ID@J87[ZJ24~ Cu A=5/ (12-4), 8=87/24, -

w@12ITJC:07 / (12-4), 8=87/24, C=12/ (7 _

rn am 1§.JuJ -4), 8=8 7 /24, C=1 2/ (7+8), _

rnrnrnrnw =87/24, C=12/ (7+8), A*8/C_

~ 2. 83203125

9. Recall function

This function permits you to recall (into display) a portion of your original input so you can
check and/or edit it. This function is activated by pressing either the CE:] or BJ key right
after the ~ key in manual calculations.

Example 1 : When an execution is finished without an error message:

Operation

rn@ 19 rn 54

~

[El or Bl

Display

A=19+54_

73.

A=19+54
11'

L ..
The cursor shows up at the beginning of the display.
(The complete entry is displayed.)

Example 2: When an error occurs:

Operation

rn@mrn123455 rn

1a9012 mrn 427 m 191

mm o rn 139

~

CE or Bl

10. Editing expressions

Display

8= ((123456+_

(123456+789012) *427/197 _

+789012) *427/197) /0+139_

1

3456+789012) *427/197)/0+
,t

The cursor appears where an error is detected. J
(The complete entry is displayed to the location
where the error has been detected.)

Note

Recall

Note

Error
message

Recall

Input expressions, if recalled before or immediately after their execution, can be arbitrarily
edited (correction, insertion or deletion).
When you make a correction, insertion or deletion, follow the procedures given below.

Correction:

Insertion:

Use the CE or 8] key to move the cursor to the position where the correc

tion is to be made/stored, and enter correct key operation.

Use the CE or 8] key to move the cursor to the position where vou want
to insert information, and press 1§.l and [ffi§J keys.

26

The contents of that position and all after it will be shifted one step backward

and an insertion mark (:) will appear in the empty position. fl
Deletion: Use the [El or ~ key to move the cursor to the position you want to

delete, and press the ~ and ~ keys. The contents at that position will
be deleted and all after will be shifted one step forward.
The cursor still remains at the said position.

Example: You make a mistake in inputting the expression below; edit as follows.

A=5+6* (21/S IN 30)

Proper operation

rn 0 5 rn 6 rn m 21 w w OJ oo 30 rn ~

(1) To correct the [±] key error (pressed by mistake instead of the W key).

Operation Display Note

The:-+l key is

rn0 5 rn 6 rn A=5+6+ added instead of
- theWkey.

~ A=5+6+ The cursor moves to
the left.

rn A=5+6* Enter the correct - key.

(2) If you forget to input the W , [I] and ~ keys (Insertion of SIN)

Operation I Display ! Note

DEG .,
rn0 5 rn 6 rn A=5+6*_

m 21 w 30 rn A=5+6* (21 /30) _ SIN is not entered.

~~~ A=5+6* (21 /30) The cursor moves to 
the left. 

~@§] A=5+6* (21 /!J30) l Spaces are added 

A=5+6* (21/!J8830) 
where you want to 

~ [ill]] ~ [ill]] enter SIN. 

WOJOO A=5+6* (21/SIN30) 

§..JI 257. 
SIN is inserted. 

i 

(3) If you have input 211 by mistake instead of 21 (Deletion of 1) 

Operation Display Note 

DEG 
rn 0 5 rn 6 rn rn A=5+6* ( -

211 m w OJ oo 30 rn A=5+6* (211/S I N30) _ 

~~~~ A=5+6* (211/S I N30) } The cursor moves left 
to the position where

~~~~ A=5+6* (211/SIN30) you want to make an 
deletion. 

~~ A=5+6* (21/SIN30) 1 is deleted. 

§..] 257. 

27 



(, I 

' 

f 

(4) If you have input 2 by mistake (instead of 6) and executed the calculation. 

Operation Display Note 

DEG 
[A]@] 5[±] 2~[IJ A=5+2* 

Set DEG mode. 
(_ 

21 [ZJ W ITJ 00 30 OJ A=5+2* (21/SIN30) -
~ 89. 

BJ A=5+2* (21 /SIN 30) Entire expression is 
is recalled. 

[E][~][EJ[E] A=5+2* (21/S IN 30) The cursor moves left. 

6 A=5+6 * (21/S IN 30) Correction 

~ 257. 
I 

(5) If you have input SIN O by mistake (instead of SIN 30) and executed the calculation (Error 
display) 

Operation Display Note 

DEG 
W@J5GJ6ww A=5+6* ( -

21 [ZJ W ITJ 00 0 OJ A=5+6* (21/SIN0) -
~ 1 ... . . . . . . . . . . . . . Error is detected. 

[El A=5+6* (21/SIN 0) Entire expression is 
recalled. 

BJ~ [illfil A=5+6* (21/SIN ::JO) 

I 
3 is inserted. 

3 A=5+6* (21 /SIN 30) 

~ 257. 

• Cursor positioning 
If you keep the [El or BJ key pressed, the cursor automatically starts moving right or left 

after about one second. The cursor will move about 10 steps per second. The cursor stops auto
matic movement as soon as you release the key. When editing long lines of information, this fast 
advance or return is a great aid. 

28 



11. Priority of cal_culations 

The computer performs calculations from the left to the right with some exceptions (for example, ·ft 
functions, multiplication or division has priority over addition or subtraction). The following 

lists the order of operations of the Computer. 

1. Recalling 11 and fixed memories A through Z. 

2. Recalling memories in the form of A ( ) (Recalling dimensioned memories) 

3. Power directly preceded by multiplication (which involves memory) 2A A 3, for example. 
4. Multiplication where * is omitted: 2A, 118 or AB (see page 30) 

5. Functions (SIN, COS, TAN, ASN, ACS, ATN, LN, LOG, EXP, OMS, DEG, INT, ABS, SGN, 

vl 
6. Power (A) other than as defined in 3 above. 
7. Sign (+, -) 

8. Multiplication and division ( *, /) 
9. Addition and subtraction (+, -) 

10. Logical computation(=,>,<,>=,<=,<>)· 

• Calculations in parenthesis will occur first. In multiple parenthesis, calculations in the inner
most parentheses have priority over all the others. 

• Compound founctions ( LN ABS A, EXP v 8) are calculated from right to left. 
• A string of powers, such as 3 4 2, is calculated from the right to the left. 

Levels of pending operation 

1 rn. 3 rn li::l 5 rn w oo rn rn oo co 20 rn 32 m. ~ rn 3 m CEl a ~ 
-._,-, 

G) 

@ 

@ @ 

@ 

@ 

@ 

® 

As seen from the example above, the Computer performs computations following a given mathe

matical formula. But this presupposes that the Computer has a place to temporarily store 

instructions or data (numerical values) that cannot be directly processed. Such a place is called a stack 
(a stack register). Your Pocket Computer has a 16-stage function stack and 8-stage data stack. 

Example: Behavior of both stacks during the execution of 

1.2 + A * (3.5 + SIN 8) A A (25) ~ 

Where A= 2.4, 8 = 30, A (25) = 3 

Angular mode= DEG 

29 

I 



{; I 

I nstruc- X Data stack Function stack 

tion register 
1st stage 2nd stage 13rdstage ... 1st stage 2nd stage 3rd stage 4th stage 5th stage . .. 

1.2 1.2 
+ 1.2 1.2 + 
A 2.4 1.2 + 

* 2.4 2.4 1.2 * + 
( 2.4 2.4 1.2 ( * + 

3.5 3.5 2.4 1.2 ( * + 
+ 3.5 3.5 2.4 1.2 + ( * + 

SIN 3.5 3.5 2.4 1.2 SIN + ( * + 
B 30 3.5 2.4 1.2 SIN + ( * + 
) 0.5 3.5 2.4 1.2 + ( * + 

4 2.4 1.2 * + 
,,-.... 4 4 2.4 1.2 ,,-.... 

* + 
AC 4 4 2.4 1.2 AC ,,-.... 

* + 
25 25 4 2.4 1.2 AC ,,-.... 

* + 
) 3 4 2.4 1 .2 ,,-.... 

* + 1, 

i 

ENTER 64 2.4 1.2 * + 
i 

I 

153.6 1.2 

I 
+ 

154.8 

Note: X register is the Calculation register 

As seen from the above, "A(" is placed in the function stack as one step. The Computer will 

handle up to 15 levels of parentheses unless the function stack capacity is exceeded. 

NOTES 

The Computer permits you to input 2 * A, 3 * rr or B * A ( 12), for example, in the following 
form: 2A, 3rr or BA(12) omitting the multiplication symbol * immediately in front of 

memory or rr. Such a form of multiplication has priority over functions, but when it is directly 

followed by a power, the power takes precedence over it. 

Example: SIN 2A ➔ equivalent to _SIN (2 * A) 

2rr A/\ 3 ➔ equivalent to 2 * rr *(A/\ 3) 

However, expressions put in the Computer as mentioned above (multiplication instruction * 
omitted) are executed just as tho they were incorporated in the instruction. 

Example: Behavior of the stacks during execution of 2ABC ~ 

If A = 3, B = 5, C = 7 

Instruction X register Data stack 

2 2 
A 3 2 * B 5 3 2 * C 7 5 3 2 * ENTER 35 3 2 * 105 2 * 210 I 

30 

Function stack 

* 
* * 
* 



You program your TRS-80 using a computer language called BASIC. BASIC is generally considered 
the easiest computer language to understand -- since it uses simple English words. But of course 
BASIC is not limited to beginners -- it is a very powerful computer language used by many 
experienced professional programmers. You can't "talk" (or "type") to your Computer in an every
day English conversational manner. You have to use the correct words, in the correct sequence -

that is, according to certain rules. 

With a Computer, you are the master, you are the boss. The Computer can only do what you tell it. 
But you must give the instructions in a form the Computer can understand. That's where the BASIC 
language comes in. Each BASIC instruction must start with a line number (normally we start with 

10 and each successive line is by 10's -- 10, 20, 30, etc.). 

Since this Manual is not intended to be a simple learner's guide to BASIC Programming, if you feel 
we are moving along .too fast, we urge you to stop by your local Radio Shack store and obtain a 

copy of either (or both) of the following books: 

BASIC Computer Language (60-2016) 
BASIC Computer Programming (60-2015) 

31 

t 



()' 

' 

1. What is a program calculation? 

We've been discussing manual calculation for the last 8 or 10 pages -- calculations performed by 
manual entry of all information. Now let's find out why your TRS-80 Pocket Computer is much 
more than a Calculator. 
With programmed calculations you enter a series of instructions to the Computer (a program). 
Then all you need do is enter the data for the calculation work - the Computer uses the program 
(stored in memory) to give you the answers. Let's give an example. 
When solving problems using Pythagoras's theorem, for example, you must carry out the follow-
ing operation. 

Pythagora's theorem 
For a rectangular triangle, its three 
sides a, b and c have the following 
relations 

c = J a2 + b2 

where c is the side opposite to the 
right angle. 

Manual calculation requires the following sequence. 

(when a = 3 and b = 4.) 

Operation Display 

Set to the RUN mode. 

[IJ@J3~ 

[]]@]4~ 

w @J rD rn rn rn oc 
1 

C=r (A*A _ 
rn rn cu rn m 

1 

C=r (A* A+B* B)_ 

~1 
[The above calculation of course can be accomplished by using: 

LJb 
a 

Note 

3. A is loaded with 3, 

4. B is loaded with 4, 

5. /A 2+B 2 

y (3 * 3 + 4 * 4 ) ~ . However, we're using the key operations shown above to aid in our 
application example.] 

Let's key in this simple BASIC program: 

[PROGRAM 1] Program Note 

1 0: INPUT A•B Input instruction 

20: C=✓ (A*A+B*B) Operation instruction 

30:PRINT C Output instruction 

40:END End instruction 

NOTE: The letters A, B and C are called variables. You might want to refer to pages 45 to 
50 for a detailed description of what variables are and how they relate to program
ming. 

To complete a program line, you must press ~ . 

32 



Basically, a program is complete if you have an input instruction (INPUT), output instruction 

(PRINT) and end instructio~ (END) plus the steps required to process the calculation procedures. -

Input instruction: Provides input data for memory. 
Output instruction: Provides display of calculation results (or other output). 

The tables below summarize the writing and execution of Program 1. 

Operation Display 

[Writing] r- Prompt symbol 
Set to the PRO mode. ) 

00 IT] [fil ~ ) 

10 COOOITJOIJCTJ 1 0 INPUT_ 

w~GJ[]J 1 0 I NPUTA • B_ 

~ 1 0: INPUT A• B 

20 w@ [El ITJ W 2 OC=✓ (A _ 

rnrnrnrn 2oc=✓CA*A+B_ 
rnrnrn 20C=✓ (A*A+B*B) _ 

~ 20: C=✓ CA*A+B*B) 

30ITJ[[JC:000CTJ 30PR I NT_ 

[Execution] 

W 30PRINTC_ 

~ 30:PRINT C 

40ITJOO[QJ 40END_ 

~ 40:END 

Set to the RUN mode. 

~~~ ) 

[[JOI.JOO RUN_

~ ?

3 3_

~· ~ ?

4 4_

~

~)

5.

Note

Press ~ key to display PRO
(i.e. program mode).

Clears program memory.

}
Number and instruction is
entered. (Input instruction)

Line 10 is "written" into
Computer.

I Number and instruction is
entered. (Operation
instruction)

Line 20 is written into
Computer.

l Numher and instruction is
f enter,~. (Output instruction)

Line 30 is written into
Computer.
Number and instruction is
entered. (End instruction)
Line 40 is written into
Computer.

RUN will be displayed.

RUN tells Computer program to
start execution.

Execution is started; the display
asks you to input a variable.

A variable, 3, is put in.
The variable is written in (3 is
loaded on memory A); the
display asks you to input
another variable.
A variable, 4, is put in.

The variable is written in (4 is
loaded on memory B); calcula
tion result is displayed .

. Execution is terminated.

Repeat these operations inputting different values. Thus you can calculate many problems using
Pythagoras's theorem.

Thus, once a program is written, you can execute it simply, any number of times you want.

33

I

2. Writing programs

When you "write" programs using the keyboard, set the Computer in the PRO mode.

Preparation

When writing a new program, we suggest that you clear the program memory by using a NEW
command.

However, this is not true if you want to write a program in succession with the preceding one.

[Procedures] (1) Designate the PRO mode.

(2) [Kl IT] [}ID ~

All contents of the program and data memories will be cleared with above (2) operation.

Writing in
Detailed below is how you would write the first program (PROGRAM 1).

Step Operation Display Note

Set to the PRO mode

1 [K)ITJ[}I[]~ > The program memory is cleared.

A colon (:) does not r need to be put in.

2 10 OJ [ID ITJ [[] CL; 101NPUT_ l Write in line 10. (This line is

3 w~ITJrn 101NPUTA•B_ placed in the input buffer.)

4 ~ 1 0: INPUT A•B Line 10 is entered into program

t A display l Space
memory when you push ~ .

of colon

5 20W@J[£':J[TIW 2 OC=✓ (A_
6 rnwrnrn 20C=✓ (A*A+B_ I W,i,e io ""' 20. (This ""' is

placed in the input buffer.)

7 rnrnrn 20C=✓ (A*A+B*B) -
8 ~ 20: C=✓ (A*A+B*B) Line 20 is entered into program

memory.

9 30 ITJ CID OJ 00 ITJ 30PRINT_ i Write in line 30. (This line is

10 w 30PRINTC_
placed in the input buffer.)

11 ~ 30:PRINT C
Line 30 is entered into program
memory.

12 40 ITJ 00 []] 40END_ Write in line 40. (This line is
placed in the input buffer.)

13 ~ 40:END Line 40 is entered into program
memory.

If you followed the Notes in the chart, you'll realize that the lines of instruction are first held in

the input buffer and then loaded into program memory when you press ~ .

As you enter a line into the Computer you notice that a colon appears after the line number.

Also the Computer adds a space after commands (PRINT, INPUT, etc.).

If any line contains more characters than the display can show at one time, only the beginning

portion of the line of instructions will be displayed (up to 24 characters and spaces).

34

Comment

You have learned by now that the Computer's programs are made up of lines: a line is composed of -
a line number, label and statements.

Example: Composition of a program

Line

1 2 3 4 5 6 7 +- Step no.

10: INPUT A, B :ENTER:
Line
no.

Statement

Line

Line end
instruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

: : : : : : : : : : : :
16 17 18

20: C=F(A*A+B*B) : PR I NT C iE-t-.ftE-Ff

no. instruction

+- Step no.

LT;;'e Statement l Statement t~-·
Colon for separating statements

1 2

--'-

30:
Line
no.

Line

3 4 +- Step no.

END ENTER: ------ ----- .

Statement Line end
instruction

Line

• Lines must be numbered with integer numbers ranging from 1 to 999.

• Ending of a line is accomplished by inputting the ~ key. The ENTER instruction is repre-
sented by a space in the display. (Nothing appears.)

Statement
• One line consists of one or more statements (statement instructions in the BASIC language).

• Statements are divided by colons (:).

Step
One statement consists of one or more operation instructions, each of those instructions having
a capacity of one step.
Instructions such as LN, SIN and INPUT are processed as one-step information written into the
program memory, even though represented in the display by two to six characters.

Label
Characters (letters, numerals, symbols) are placed between quotation marks following a line
number. The label serves as the sign for a program jump, etc. See page 42.

Note: Each line number (1 through 999) is held as two-step information in the program memory.
Although not present in a program memory, the colon (:) that follows every line number
is automatically displayed immediately after programs have been written or when they are
recalled.

35

. . (j
,

f.

Organization of Program Memory

When loaded with programs, the program memory changes as follows:

An input is placed (on a 1-character = 1-step basis) in the input buffer, when ENTER is pressed

the input is written in the program memory (after being converted into the form of 1-instruction =
1-step).

Input
buffer line 10 I j line 20 I

• ENTER

line 10

• ENTER

line 10

line 20

--->

... - - - " .

line 30 j I line 40

• ENTER • ENTER

line 10 line 10

line 20 line 20

line 30 line 30
--->

line 40

,,.,.,..,...,.,_
" - - -

• One line of a program can hold a maximum of 80 steps (1 step= 1 character)

Lines are stored in numerical order into the program memory (even if not entered in numerical
order).

line 30 line 10

line 30

line 10

line 30

line 40

. - "" --

line 10

line 20

line 30

line 40

- - - .

However, the real program memory does not have a separate storage area for every line as shown

above, but stores programs step by step in a row; your Computer has a capacity of 1424 steps.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Line : no.
: INPUT: A B !ENTER:

Line: no. · \
C ✓ (A * A fO : ' 2:0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 +--step

Line : no. Line : no. ' ' '

+ B * B) :ENTER: 3:0 : PRINT: C : ENTER: 4:0 ·: END : ENTER:
' ' '

3. Checking stored programs

You should always check that programs are properly stored.

Whenever programs are input via the keyboard, the Computer displays them (permitting you to
check each input).
After you finish writing a program, you can check it as follows:

CD Select the PRO mode.
(2) Recall the line you want to check, by pressing the ~ or CD key.

Or recall the intended line with a LIST command. (Refer to page 72.)

36

Cll Check instructions on the display.
If a display line is more than 24-characters long, move cursor by using ~ and ~ keys A
to display the remainder. •

Example: Checking programs

Operation Display Note

Set to the PRO mode)

rn 1 0: INPUT A•B

rn 20: C=✓ (A*A+B*B) Lines are recalled in numerical

rn 30:PRINT C
order.

rn 40:END
[TI 30:PRINT C Lines on the display are brought back

to the memory.

[TI 20: C=✓ (A*A+B*B)
IT] 10: INPUT A•B

• If you press and hold the DJ or [TI key for about one second, the display will auto

matically show the next line or the preceding line.

Note: When the program memory is loaded with nothing, pressing the DJ or [TI key or
execution of a LIST command will only display the prompt symbol (>).

4. Program correction

When you find errors in stored programs, use the following procedures for correction.

Partial correction

[Procedures]

(D Select the PRO mode.
(2) Display the line you want to correct by using the DJ or w key, or a LIST command.

@ Move the cursor to the step you want, by pressing the ~ or ~ key.
@ Make a correction, insertion or deletion deletion as described on page 26.
@ When the correction is finished, press the ~ key. This will return the corrected program

to program memory.

Example: A program identical to PROGRAM 1 is set up and corrected as follows:

1 0: INPUT A• B

20: C=J(A*A+B+B)
~

30:PAUSE C

40:END

37

2 0 : C=✓--(A* A+B* B)

30:PRINT C

Step Operation Display Note

Set to the PRO mode >
20: C=✓ (A*A+B+B)

Recall the line you want to
1 rnrn modify.

2 [E) 20 C=✓ (A*A+B+B)
The cursor appears on the
display.

3 CEJ······ [E) 20 C=✓ (A*A+B+B)
The cursor moves to the posi-
tion where correction is to be

4 rn 20 C=✓ (A*A+B*B)
made.
Correction

5 ~ 20: C=✓ (A*A+B*B) Remember to press ~.

6 DJ 30:PAUSE C Recall another line you want to
modify.

7 BJ 30 PAUSE C The cursor appears on the
display.

8 IT] 30 PC j co,,.,,;o, 9 CID 30 PR -
10 rn oo rn w 30 PRINTC -
11 ~ 30:PRINT C Write in corrected line.

• Pressing [E) or BJ key once after the recall of a line, recalls the cursor. (Steps 2 and 7 in the
above table)
The cursor shows up at the beginning of first statement; a colon (:) after line number dis

appears, leaving a space there.

• Upon reaching a 1-step imperative statement (such as INPUT or PR I NT) the cursor positions

only at its first character.
If you make a change in this first character, the entire statement disappears from the display.

' (Step 8 above)

Inserting lines
To insert lines into written programs, follows this procedure:

(1) Select the PRO mode.
(2) Input a line. This line must be given a line number between the line numbers before and

after where you want it to be positioned in the program.

If you wish to insert a new line between lines 10 and 20, you must number the new line

within 11 to 19.
(3) Press the ~ key. The new line is then written into the program memory.

Example: Insertion of PAUSE A, B between lines 10 and 20 of PROGRAM 1. (New line

number is 15.)

10: INPUT A•B+-----+--15:PAUSE A,B
20: C=✓-CA*A+B*B)
30:PRINT C
40:END

38

Operation Display

Set to the PRO mode.

15wwOIJwm 15PAUSE_

rn~c::urn 1 5PAUSEA • B_

~ 15:PAUSE A•B

[TIJQJ 10: INPUT A•B

QJ 15:PAUSE A•B

QJ 20: C=✓ CA*A+B*B)

Deleting lines

Note

f lloe 15 1, po, h

Writing (insertion) of line 15.

To delete a certain line from the corresponding stored program, follow these procedures:
(1) Select the PRO mode.
(2) Input only the line number of the line you want to delete, and press the ~ key.

Example: Deletion of line 15.

Operation

Set to the PRO mode.

5. Executing programs

15 1 5 _

~)

Display

QJ 10: INPUT A•B

QJ 20:C=JCA*A+B*B)

You must execute programs in the RUN or DEF mode.

[Procedures]
CD Select the RUN mode.

Note

Input the line number of
line to be deleted.

line 15 is deleted.

Checking

~ Press the [BJ , DI] , 00 and ~ keys. The Computer starts the execution of pro
gram.

Q) When program execution stops at an IN PUT instruction, the "?" symbol then appears, input

data and press ~ key.
@ When program execution stops at a PR I NT instruction, Calculation result is displayed, press

~ key without inputting data.
® Program execution comes to an end at an END instruction. The prompt symbol then

appears.

39

(

Example: Execution of PROGRAM 1
(1) When A= 12.3, B = 15.7
(2) When A= 36, B = 27

Operation

Set to the RUN mode.

[KJ [[] [ID RUN_

~ ?

Refer to CJ) above { 12.3 1 2. 3_

~ ?

@ {
15.7 1 5. 7 -
~

Refer to @ above { ~)

[KJ[[][ID~ ?

36~ ?

27~
Refer to @ above ~)

Display Note

Inputting RUN
instruction.

Execution starts.

Inputting data (A)

Inputting data (B)

1 9. 94442278 Result appears.

Execution ends.

Execution starts.

45. Result appears.

Execution ends.

40

6. DEBUGing programs

The DEBUG function helps you ckeck to see if prepared programs are working properly. ti
Programs are executed a line at a time so you can check the progress.

Example: Debugging of PROGRAM 1
When A= 36, B = 27

Operation Display Note

Set to the RUN mode

rn rn rn cm w ~ ?
DEBUG command commences
debugging.

36 36_ Inputting of data

DJ ?
INPUT instruction for line 10
is executed.

27 27_ After execution of the above
instruction, the Computer

[I] 1 0 : displays the line number and
stops.

W (kept pressed) 1 0 INPUT A•B Checking of executed instruc·
- tion; the cursor indicates the

executed instruction - ENTER
in this example. (i.e. space)

Release the [D > The prompt symbol appears
after display of line 10.

QJ 20
After the debugging of line 20,
its line number is displayed.

,=o 45. Display of calculation result
(execution of PR I NT statement)

rn~ 3 6.
} Checking of memory contents

rn~ 27.

DJ 30
The computer stops after
debugging line 30. ..

,:::IJ > Debugging ends.

(For DEBUG command, refer to page 71.)

In debugging, as shown above, pressing the ~ key executes the instruction on each line.

While execution is stopped, you can manually check memory data contents; (just press W ~
or rn I§]).
The DJ key activates the debugging operation (even if pressed after checking memory contents).

Again, when execution stops, the cursor indicates the step where the Computer is waiting and you

can display the corresponding program line by pressing the CTI key.

• To interrupt debugging and resume normal operation, use the CONT command.

w [Q] CKL.:TI ~

[Rapid debugging]
If you hold the DJ key down for one second or more, the Computer will stop debugging and will

start to execute programs as normal.
When you release the [TI key, the Computer will resume the debugging mode as soon as it finishes

executing the present line.

41

{l

'

PROGRAM

WRITING CHECKING I CORRECTION EXECUTING DEBUGGING
I
I

MODE PRO PRO PRO RUN RUN

ENTER NEW~ I RUN~ pEBUG ~
I
I

LINE I [IJ' [!J [IJ, [I] [IJ, [!]
I

CURSOR [El, BJ I
[El' BJ

~~
' I

~ @El

7. Defined programs

When more than two programs are written in the program memory, the second, third, etc.
programs then can be executed by the key operation: [BJ QO [ID [line number] ~ . If

keys W , W or [QJ are defined by assigning programs to them, you execute those
programs by using ~ W or ~ W in the DEF mode.

To assign programs to certain keys, you must write the labels of those keys at the beginning of
the programs you want to assign: for example "A" for key W . (You must place the label
right after the line number entry.)

• The following 18 keys are definable.

rn, rn,
rn, rn,

w,
m,

w,
rn

w, ITO, QJ,

rn, oo, oo,

42

[KJ, rn, @,

Examples of define~ programs written in and executed. A, .

PROGRAM 2 ,,.

Program Note

1 0: "A" : INPUT A, B Label A

20: C=✓ (A*A+B*B) C=/a'+V: Pythagoras's theorem

30:PRINT C

40:END

Label S 50: "S" : INPUT D

60:E=4/3*7r*D,....._3

70: PR I NT E

80:END

V= ~ 1r r 3
: Volume of sphere

90:" ": INPUT F•G•H Label SPC (space)

100: I =✓-(F*F+G*G-2*F*G*COS H)

110:PRINT

C=✓ a'+ b'-2 ab cos e
Law of cosine

120:END

Writing

Set to the PRO mode

[RJ IT] [fil ~

Operation

__c:- A colon behind a label can be eliminated.

10 ~ODrn~OD~□cooowwrnrn~wrn~
20 w 0 G:J rn rn rn rn rn rn rn rn rn ~
30 w []] ITJ 00 ITJ w ~
40 ITJ[RJ[QJ~

50 ~ OD W ~OD~ D ITJ 00 w [10 ITJ 00 ~

60 rn0rnrnrnrn~oornrn~rnrn~
70 W []] CO 00 ITJ ITJ ~

ao rn oo rn ~

90 ~OD~~ OD~ D ITJ 00 w [10 ITJ CTI~ Cu

w~GJOO~
100 co 0 G:J rn m rn m rn w rn w G rn rn m rn

w rn w w rn oo rn ~
110 w 00 CO 00 ITJ ITJ ~

120 rn oo rn ~

43

Note

Label A

Label 8

Label SPC
(Space)

()

Execution

Operation

Remember to select the DEF mode

~rn?

(When A= 4)

(When B = 3)

(When D = 2)

4~?

3~

~)

rn ~ w rn rn w ~)

~~ ?

(When F = 12) 12~ ?

(When G = 14) 14~ ?

(When H = 30) 30~

~)

Display

5.

Note

Execution of the program
labeled A starts.

Result

End

Execution of the program
labeled S starts.

3 3. 5 1 0 3 2 1 6 4 Result

End

Set to DEGREE Angular
mode.

Execution of the program
labeled SPC starts.

7. 001104508 Result

End

To resume execution after being interrupted with an INPUT or PR INT instruction, press ~ key

(as shown in the example above.

• When an identical label is given to two or more lines, the lowest line number is executed.

• Inputting an undefined key causes an error. (Error code: 2)

44

1. What is a variable?

A variable is a letter (or character combination which represents a memory location in which
information can be stored (this information often is called data and can be a number or series of
characters).

In this Computer variables are divided into fixed memories (26 pieces) and a flexible memory
(refer to "Calculations Using Memories" on page 15). The memories store not only numerical
values, but they can also store items composed of characters (such as a person's name or item
name).

Numerical variable

A data memory is called a numerical variable when it's storing numerical values, and is labeled as
A, 8, C, A(1) or A(28).

Character variable
A data memory is called a string or character variable when it's storing a sequence of characters,
including letters, blanks, numbers, special symbols, and is labeled as A$; 8$; C$ or A$(1) (the
$ being called a "string" - e.g. "A-string", etc.). (One data memory can contain a maximum of
seven characters.)

1 0: INPUT A$, 8$

2 0 : PR I NT A$, 8$

Operation

Set to PRO mode

[KJ[IJ[N]~

10 ITJ []] w OD ITJ

w~CL~w

20 moo rn oo rn
rn~=:IJ~w
rn ~ :_:u

~

Change PRO mode to RUN

[BJ OD CID ~

rn oo rn rn oo
~

26438

Display Note

> Clears the memory

10INPUT

10 INPUT A$,_

10 INPUT A$, 8$_

10: INPUT A$, 8$

20 PRINT

20 PRINT A$,_

20 PRINT A$, 8$_

20: PRINT A$, 8$

?

SMITH_

? A$ is loaded with "SMITH"

26438

SMITH 26438

45

8$ is loaded with "26438."

Note: If a variable loaded with a numerical value is specified as a character variable, or if a

character variable is specified to store a numerical value, an error (error code: 1) occurs.

Th is error will not occur when variable are cleared, that is, when a numerical variable is
loaded with O or a character variable is loaded with no character.

2. Specifying variables

Fixed memory
1. Specify fixed memories simply by pressing a single key such as W , or two or more key

such as W ~ W .

Example: W
rn~rn

➔ Numerical variable A is specified.

➔ Character variable B$ is specified.

2. Fixed memories A through Z or A$ through Z$ are individually given serial numbers
1 through 26, and are specified by inputting codes such as A(1) and A(5) or A$(1) and A$(5).

Example: A(1)

A$ (1)

A (48-25)

A$ (3*4)

➔ Numerical variable A is specified.

➔ Character variable A$ is specified.

➔ Numerical variable A(23), namely W, is specified.

➔ Character variable A$(12), namely L$, is specified.

• When you use the form A () or A$ (), only the integer part of parenthesized value is
effective.

• Memories specified in the form of A () or A$ () are called dimension memories.
• You should note that memories A through Z, and A(1) through A(26), A$ through Z$ and

A$(1) and through A$(26) actually use the same memory location. For example, A, A(1),
A$ and A$(1) all use the same memory location. And E, 8(5), E$ and C$(5) all use the same

memory location. Only one value or piece of data can occupy any given memory location at
one time.

When B or A(2) is entered, for example, data memory B is specified as a numerical variable;
when B$ or A$(2) is entered (the same data memory, namely memory B) is specified as a

character variable.

Flexible memory
Flexible memory is specified in the form A () or A$ () in the same manner as in 2 above.

But when the value in parentheses is smaller than 27, this flexible memory is not specified, since

number of fixed memories is 26.

Example: A(27) ➔ Specification of numerical variable A(27) (flexible memory)

A$(19 x 2) ➔ Specification of character variable A$(28) (flexible memory)

Note:

Memo,y l Data memory
(Variable)

Program memory

Numerical memory

1 (Numedeal ,adable)
Character memory

(Character variable)

46

The memories of the TRS-80 Pocket Computer

A, A$,

8, 8$,

26
memories :

:
z, Z$,

178 memories

or
1424 steps

Indirect designation

A(1), A$(1)

A(2), A$(2)

:
:
:

A(26), A$(26)

A(27), A$(27)

A(204), A$(204)

Data memory
(Fixed memory)

Program memory

Any program memory left open (unused) after
the programs are stored can also be used for data
memories. When used for Data memory it is
called a flexible memory. Thus, the number of
available memories varies depending on how
many steps are used to store programs. So, when
using the flexible memory, you should always
check in advance how many memory locations

are available (by using the MEM command).
(For MEM command, refer to page 73.)

NOTE: 8 steps of program equals one data

memory.

An indirect designation of memories (variables) is a method of designating an arbitrary memory

(numerical variable) corresponding to its contents.
The indirect designation is made in the form of A(8) or A$(8); that is, a numerical variable is put in

a set of parentheses.

With this method you can specify all data memories (variables) according to their contents - only
the integer parts of them are effective.

Example: A(A) ➔ A numerical variable that is given a serial number corresponding to

variable A.

A$(A(3)) ➔ A character variable that is given a serial number corresponding to
variable A(3), namely C (3rd fixed memory location).

Following are some examples of the advantages of indirect memory designation.

47

Example: Programs where data is put in variables B through z.

1 0: INPUT B, C, D, ······, Z When variables B through Z are directly
specified in line 10.

10:FOR A=2TO 26

20: INPUT A (A)

30:NEXT A

The value of A varies from 2 to 26; programs

stored in the variables corresponding to those
numbers are repeatedly executed.

In response to the program, variables B
through Z are executed in sequence.

The indirect method of designating memories can provide a depth of up to 15 stages by specifying
dimensioned memories in sets of parentheses.

Example: When C = 2, B = 6, F = 8,

A (A(A(C))) ➔ Variable H is specified.

A (A (A (C)))
11--...-

: A(2)=B=6 -------A(6)=F=8

\ A(8)=H

Note: In designation of dimension memories, when a specified value is below 1 or exceeds the

area within which the flexible memory is specified, an error occurs. (Error code: 4)

3. Inputting to variables

You can load the memories (variables) with numerical values or chracters in the following forms:

General form (1)

General form (2)

General form (3)

[Numerical variable] = (Expression)

The value of (expression) is put in a numerical variable specified on the left

side of the above equation.
Note: (expression) also covers a numerical variable.

[Character variable] = "Characters"

Characters (letters, numerals, blanks, symbols, etc.) between quotation (")
marks on the right side are put in the characater variable specified by the

left side of the equation.
When the number of characters on the right side exceeds 7, only the first

seven characters are put in.
Note: When clearing the equation, specify the right side of the equals as ".

[Character variable] = [Character variable]
Characters stored in the character variable specified by the right side of the

above equation are put in the character variable specified by the left side.

Examples: A = 5 * 6 ~ ➔ The result of 5 * 6, 30, is put in variable A.

A$(27) = "USA" ~ ➔ Characters "USA" are put in variable A$ (27).

8$ = A$ (9 * 3) ~ ➔ Characters stored in variable A$ (27) are put in
variable 8$.

48

Example: A program that recalls names of fruit corresponding to predetermined name codes 1

A

B

C

D

through 26 put in the Computer. (Indirect designation) -

Key in: code (number)
Display: character (name of fruit)

(The program assumes that you already have stored the fruit names in A$ through
Z$).

10: INPUT A(27)

20: PRINT A$ (A(27))

Contents of data memories

ORANGE

APPLE

BANANA

MELON

When data is input by
manual operation

Operation

2

3

4

0

0

Operation

Set to the PRO mode

00 IT] [fil ~

10 OJ oo m cm rn rn m 27 OJ ~

20 W CK] OJ 00 [TI

rn ~ m m rn c:::o 27 OJ m ~

Operation

Set to the RUN mode

rn~m@J~~
CQJ =:ITJ rn 00 w w ~ OD~

rn~ □]0~0:0

rn w w w m ~ 0 ~

Display Note

Set to the RUN mode

[KJ[fil[K]~ ?

2 2 Inputting a number -
~ APPLE Display of corresponding

fruit's name

4. Recalling the contents of variables

To recall the contents of memories (variables), use the following form:

General form [variable] ~

Example: When 120 and "GOOD" are stored in A and B$ respectively.

Operation Display Note

RUN mode rn A Designation of numerical variable
-

~ 1 2 o. Display of number stored there

rn~rn 8$ Designation of character variable -
~ GOOD Display of characters stored there

49

Note: If you recall the contents of cleared memories (variables) using a NEW or CLEAR command,

"O." is displayed when they are specified as numerical variables and a blank space appears
when recalling a cleared memory character variable.

If a memory is loaded with -0 and specified as a character variable, an error occurs (Error
code: 1).
Also, if you clear a variable specified as given in General Form (2) or (3) and then attempt to
recall it as a numerical variable, an error also occurs (Error code: 1).

Comments:

Vacant program memory areas are available to be used as flexible memory. Programs can be written
into the program memory until its capacity is exceeded. Accordingly, keep in mind that if you edit
programs (insertion, deletion, correction) this changes program steps or content, and this may affect
the number of flexible memory space available.
For example, when programs are written as shown in illustration (A) below, recalling or writing the
contents of flexible memories A(42) or A$(42) results in an error (Error: 4) because no flexible
memories exist corresponding to such codes.

(A)

Also, when the arrangement of progras written (added) as shown in illustration (A) is changed

to be as shown in illustration (8), flexible memories corresponding to A(41) or A$(41) and A(40)
or A$(40) disappear. Thus if you try to recall or write to these memories, an error occurs (Error:
4).

By contrast, a string of programs stored as shown in illustration (8) can be shortened as shown in
illustration (A) (by editing), the number of memories available to be used as flexible memories
increases in proportion to the degree of the change.
(One flexible memory corresponds to 8 program steps.)

Note: When you try to recall flexible memory which is loaded with nothing, unexpected displays
might appear or an error might occur (Error: 1).

50

In this section we use the following form for various terms, [variable), [numerical variable),
[character variable) and (expression).

[Variable): General name for numerical and character variables.

[Numerical variable]: General name for fixed memories defined by A through Z and dimensioned
memories defined in the form of A ().

[Character variable]: General name for fixed memories defined by A$ through Z$ and dimen-
sioned memories defined in the form of A$ ().

(Expression): Operational expression composed of elements of (expression) as we des
cribed on page 18, covering also [numerical variable] .

1. LET statement

The variable name on the left is assigned the value of the constant or expression on the right.
The TRS-80 Pocket Computer does not require LET except when it is used with an IF statement.
(For IF statement, consult page 60.)

General form (1) LET [Numerical variable] = (Expression)

Example:

Example:

LET A= 5 *3

LET A= 123 Instruction to put 123 in A (LET can be omitted as in the
following example.)

A(30) = 3 *6 Instruction to put 18 in A (30).

A (2 * B) = C + D Instruction to put the value of C +Din A (2 * B).

General form (2)

Example:

LET [Chracter variable] = "Character"

LET Z$ = "BASIC"

Characters between quotation marks are put in the character variable specified by the left side.
When the length of a string of characters on the right side exceeds seven characters, only the first

seven characters are put in (the excess is discarded).

General form (3)

Example:

LET [Character variable] = [Character variable]

LET A$(25) = Z$

Characters stored in the character variable specified on the right side are placed in the character
variable specified by the left side.

Example: A$= "NON"

A$(28) ="DATA?"

C$= A$

Instruction to place "NON" in A$.

Instruction to place "DATA?" in A$(28).

Instruction to place characters stored in A$ in C$.

• General forms (1) thru (3) can be put on a single program I ine by dividing them with commas
(.).

In this case, LET must not be used after a comma (,).

Example: 10: LET A= 2 • B = 7 • C$ ="A= 2, B = 7"

2 is placed in A, 7 in Band "A= 2, B = 7" in C$.

51

f

2. INPUT statement

This is an instruction which requests manual input data during program execution.

General form (1) INPUT [Variable], [Variable],··•

Example: INPUT A, B, C,

The instruction causes the Computer to stop program execution and display a question mark
"?". When you respond by inputting data to the Computer and pressing [§] key, the
Computer stores data in a specified variable.
The Computer carries out this process the number of times that corresponds to the number of
variables specified after an INPUT statement.

General form (2) INPUT "Character", [Variable], "Character", [Variable],···

Example: INPUT "A=", A, "B =", B, · · ·

This form of instruction causes the Computer to stop program execution and display a message
instead of "?."

Example

Programming Note

10: INPUT A•B General form (1)

20: INPUT "C=" •C• "DATA D=" •D General form (2)

Execution

Operation Display Note

Set to the RUN mode

[RJ [ill 00 ~ ? Display in general form (1)

3 3 - Inputting data

~ ? 3 is placed in A. Display in
general form (1)

4 4 Inputting data -
~ C=

4 is placed in B. Display in
general form (2)

5 5 Inputting data. -
~ DATA D= 5 is placed in C. Display in

general form (2)

6 6 - Inputting data

~~~ ) 6 is placed in D. 

General form (3) 

Example: 

INPUT "Character"; [Variable], "Character"; [Variable] · · · 

INPUT "C="; C•"D=";D• 

In general form (2), if data is input after the display of a message, that message disappears. 
In general form (3), if a semicolon ( ; ) is entered after "Character", message does not appear and 

data can be displayed following that "character." 

52 



-
Example 

1 0: INPUT "DAT A E= 11 ; E 

Operation Display Note 

Set to the RUN mode 
A display indicating that the 

rn cm oo ~ DATA E= Computer is waiting for input - in general form (3). 
5 DATA E=5 - } Inputting data 

W6 DATA E=5*6 
( (expression)). 

-

~ 30 is placed in E. 

• General forms (1) to (3) can be intermixed with each other. 

Example: INPUT A, "B =", B, "WHO?"; C$ 

• There is no I imit on the length of characters between quotation marks that specify a message in 

general forms (2) and (3). 

• You can make a correction by pressing ~ key in the course of inputting data. 
However, in general forms (1) and (2), pressing the ~ key displays a question mark"?" alone; 

with general form (3) the entire message is displayed again. 
If you pressed ~ key and an error occurs, press [ill key; either"?" alone or the entire 

message will appear as noted above. 

Note: [Variable] specified in general forms (2) and (3) must be a fixed memory, a dimensioned 

memory (that is specified by a code, such as A (30) or A (8), that contains a fixed memory 

inside the parentheses, or an integer with no sign.) 

You must be aware that you cannot use a form such as A(A(30)) or A(5 * 9). You must 

also note that indexing the ~ and Qi] keys when [ variable] is a character variable in 

general forms ( 1) to (3) will prevent you from using a character variable in the subsequent 

inputs. 

[Skip operation] 
If your press the ~ key without inputting data in response to INPUT statements, the Computer will 

skip the remaining statements on that line and go to the next line. 

Example: PROGRAM 3 (Average) 

Programming Note 

1 0: "A11 :CLEAR Definition: memory is cleared. 

20 INPUT "DATA A=u ;A:B=B+A: Inputting data: sum 

C=C+1 :GOTO 20 Counting data number: Jump 

30:D=B/C Computing average 

40:PRINT "AVERAGE= II ;D (PRINT statement in general form (5)) 

50:END End 

53 



--------------~----

The above program will find average; you must input data, the program sums the data and counts 

the data number in line 20, on completion of data input, the Computer will skip the statements 
'bl f d d ·11 d d I' 30 respons1 e or summing an counting, an WI rop own to ine 

Execution Data 12, 24, 19, 23 

Operation Display Note 

Set to the DEF mode 

~rn DATA A=_ Execution begins. 

12~ DATA A=_ 

24~ DATA A=_ 
Inputting data 

19~ DATA A=_ 
23~ DATA A=_ 
~ AVERAGE= 1 9. 5 A skip operation occurs by -<E-

pressing the ~ key 

~ > without entry of data. 

3. PRINT statement 

The PR I NT statement is an output instruction to display calculation results. 

This instruction commands the Computer to stop program execution after it has displayed 
information specified by this instruction. 
To restart program execution, simply press the §1 key without entry or have the Computer 
execute a CONT command. You need not input anything. 

General form (1) PR INT ( Expression) 

Example: PRINT 123 + 456 

PRINT A 

General form (2) PRINT "Character" 

Example: PRINT "Character" 

This form commands the Computer to display characters between two quotation marks. 
Length of a string of characters is limited to 80 (capacity of one line). 

General form (3) PRINT [Character variable] 

Example: PRINT A$ 

This form causes the Computer to display the contents of [character variable). 

54 



Example: 

Programming Note 

1 0: INPUT A$ Input instruction 

20:PRINT 5*6 General form ( 1) 

30:PRINT "PROGRAM A" General form (2) 

40:PRINT A$ General form (3) 

Operation Display Note 

Set to the RUN mode 

[]] [][J [ID ~ ? Execution of input instruction 

00 CQJ []] rn CID~ 30. Inputting ''WORLD" 

Display in general form (1) 

~ PROGRAM A Display in general form (2) 

~ WORLD Display in general form (3) 

l ( Exp..,,;on ) l . l 
( Expression) l General form (4) PRINT "Character" "Character" 

[ Character variable] [ Character variable] 

Example: PRINT A, B 
PRINT "A=,,, A 

The 24-digit display is divided into two sections: right and left 12-digit sections. The right section 

displays the first set of (expression). "character" and [character variable] ahead of comma ( , ) , 
and the left section another set. 

The value of (expression) is displayed in 12 digits (right or left sections). 
When the whole numerical data cannot be displayed in 12 digits, the least significant decimal

digits are cut off, and when the length of a string of characters exceeds 12 digits, only the first 12 

digits are displayed. 

55 

(J 



t 

Example: Polar coordinates ➔ rectangular coordinates program 
This program converts polar coordinates (r, 0) into rectangular coordinates (x, y). 

1 0: INPUT R, C 
20:X=R*COS C:Y=R*SIN C 
30:PRINT X, Y 
40:END 

Operation Display 

Set to the RUN mode 

DEG 

DL] [QJ [fil ~ ? 

(When r = 12) 12 ~ ? 

(When 0 = 30°) 30 ~ 1 0. 39230485 
Value of x 

Note 

6. 
Two numerical values are 
displayed at the same time. -------

Value of y 

General form (5) l 
( Expression ) 

PRINT "Character" 
[ Character variable] 

J "Character" \ l [Variable] 
;· .. "Character" \ 

[Variable] 

Example: PRINT "A="; A; "B="; B;••· 
PRINT A$; B; C$; C; · · · 

The form provides a concurrent display of multiple information; information items are separated 
with a semicolon ( ; ). 

Example: 

Programming Note 

10: "A" :CLEAR 
20: INPUT "DATA=" ;A Input instruction 

Sum: count of data 
30:B=B+A:C=C+1 number 

40:PRINT" TOTAL = ": B :" 
Total of sums: display 

QTY= ";C of data number 

50:GOTO 20 Jump to line 20 

Operation Display Note 

Set to the DEF mode 

~rn DATA=_ 
456 ~ TOTAL=456. Q TY=1. Display in 

general form (5) 

~ DATA=_ 
789 ~ TOTAL=1245. Q TY=2. Display in 

general form (5) 

56 



-
• When the number of characters to be displayed exceeds 24, only the first 24 characters are dis-

played. ,. · 'ft 
Note: The 2nd and subsequent display items can be only "character" and "variable"; the "variable" 

must be a fixed memory, or a dimensioned memory that has a fixed memory in parentheses 

or that is specified by an integer (up to 204) with no sign [such a manner as A (30) or A$ 
(C)], 

4. PAUSE statement 

The PAUSE statement is an output instruction I ike a PR INT statement. But, these statements 
are different in function. The PRINT statement causes the machine to temporarily stop program 
execution after it has executed (displayed) a given instruction, while the PAUSE statement forces 

it to display a specified item for about 0.85 sec., and restart program execution automatically. 
The definition form (general form) of PAUSE statement is the same as for the PR INT statement. 

5. USING statement 

The USING statement is an instruction to specify a PR INT or PAUSE display format for 
numerical data. 

General form ( 1) USING "# # ... #. # # ··· # /\" 

This form of USING statement specifies a format depending on the number of"#" between 
quotation marks, • and/\. 

"##· ... ·#. ##· ... ·#/\" 

~ \ I L~ S~dfies the sd,ntm, n~tat;o~ d;splay system. 

Spec1f1es the number of decimal d1g1ts. 

Specifies the decimal point. 

'------- Specifies the number of integral digits, including sign. 

General form (2) USING (Statement end) 

"Statement end" would be an ~ or a colon ( : ). 

This form commands the Computer to cancel the format specification. That is, a PRINT or 
PAUSE statement used after this form of instruction will display numerical information in the 

same format as a manual calculation. 

Example: Display 123.4567891 with PRINT or PAUSE statement. 

1 0 : A=123.4567891 
2 0 : US I NG" Specified format" 

30:PRINT A 

57 



~ 

Specified format 

Cancel 

# 
## 
### 
#### 
##### 
# # # #. 
######. # 
#######. ### 
####. ####### 
####. ########## 

##. ###"' 
####. ######"'"'"' 
###. ##########"' 

########:"' 

Display 

123. 4567891 

I Eno, (Eno, code, 61 

1 . 
1 . 

123 
123 

1 23. 
1 23. 4 

123. 456 
123. 4567891 

123. 456789100 
1.234!E 02 

1. 234567rE 02 
234567891 rE 02 
234567891 rE 02 

~when the scientific notation display 1s specified, a 2-digit display 1s always assured regardless 
of how many integral digits you specify. Besides, the number of specified " A " does not 
affect the display at all. 

• When numerical data cannot be displayed in a specified format, an error ( Error code: 6) 
results. 

General form (3) {
PRINT} 

(a) PAUSE 

(b) {PR I NT} 
PAUSE 

USING "Format" ; ····· 

USING;····· 

Example: PRINT USING "# # #. ##":A 

Formats can be specified (a) or canceled (bf by USING even in a PRINT or PAUSE statement. 
In this case the part after the USING statement is defined with a semicolon (; ). 

Example: 

10: A=-123. 456 

20:PAUSE USING"####" :A 

30:PAUSE USING "####.#";"A=" •A 

40:PAUSE "A=" •USING"####.#" ;A 

50:PAUSE A•USING "####.##";A 

60:PAUSE A:USING "####" ;A 

70:PAUSE USING ;A 

58 



Operation . Display Note 

Set to the RUN mode 

OU OD 00 ~ -123 

A= -123. 4 

A= -123. 4 

-123. 45 -123. 45 

-123. 45-123 

-123. 456 

Note: If USING is put in a PRINT or PAUSE statement of general form (4), a display of 

numerical data occurs according to the format in which the latter half of the numerical 
value of those statements is displayed. Thus, two numerical data are displayed in the 

format specified for the latter data, even though their display format is individually 

specified. (This is true of line 50 in the above example.) 

6. GOTO statement 

The GOTO statem_ent is an instruction to make program execution jump to a specified line. 

General form (1) GOTO ( Expression ) 

Example: GOTO 10 

GOTO 5 * 9 
GOTO A 

This form makes program execution jump to a line that corresponds to the value of (expression). 

The value of "expression" is effective in its integer part only (limited to 1 through 999'). 

Other values cause an error (Error code: 2). 

Example: 

20 : I NP UT "DAT A=" ; D 

80: IF B>=CGOTO 130-~ 

100: GOTO 20 -----~ 
·r-------- ______ _J 

·-1, 

130: PR I NT E, F 

Example: Indirect jump 

10: INPUT A 
20:GOTO A------~ 

A=30 
30: ~--~ A=40 
40 : c____ __ ___, A=50 
50: 

~------' 

59 

Jumping occurs in accordance 

with the contents of A. 



() General form (2) GOTO { "Character" \ 
[Character variable] [ 

f 

Example: GOTO "AB" 
GOTO A$ 

Th is form causes a jump to a label whose contents are the same as those of "character" or 
[character variable]. The length of "character" and label is limited to seven characters. Thus, 
if you use a label of more than 7 characters, the Computer ignores al I after the first 7. 

Example: 

Note: 

30 : "A- 1 11 
: I NP UT A$ 

90: IF P<>QGOTO A$ --- 7 
I 

I 

120: GOTO "A-1 "------,-~ 
~-$~_M_E _: t--------- I 

240: "ME": PR I NT C 
A$=YOU 1 + _______________ J 

300: "YOU": PR I NT C 

In the execution of "GOTO A$" in I ine 
90, when the contents of A$ are "ME", a 
jump to label "ME" occurs, and if "YOU", 
a jump to label "YOU" occurs. 

No statement can follow a GOTO statement; a line with a GOTO statement must have 
the GOTO statement at the end of the I ine. 

7. IF statement 

IF is a statement which uses conditions to determine action (condition can be "larger/smaller" 
decision, "equal" decision, "not-equal" decision, etc.). 

General form ( 1) IF ( Expression) Logic operation ( Expression) Execution statement 

Logic operator: <, < =, =, >, > =, <> 
If the relational expression that follows IF is affected [ if the logical operation results in 1 (true)] 
the next statement (instruction) is executed, and if not [if the logical operation results in O 
(false)] the program skips the next execution statement, going to the following line. 

Example: 

40: IF A*B)=C PAUSE A*B:GOTO 90 

50:A=A+1 

90:A=A+B 

If A* B > = C, the program begins by executing the next statement "PAUSE A* B". 
If A* B < C, the program begins by executing line 50, "A= A+ 1", skipping "PAUSE A *B: 
GOTO 90". 

60 



-
Note: 1. If you want to execute a LET statement directly after executing an IF statement, be 

sure to add a LET. -

Example: IF B > C LET B = B + 1 

2. When a GOTO statement follows an IF statement, the former can be defined with 
THEN statement (in this case the THEN statement has the same function as the GOTO 
statement). 

Example: IF B > = C THEN 50 +---+ IF B > = C GOTO 50 

General form (2) IF ( Expression ) Execution statement 

If its value is larger than 0, the ( expression ) is judged to be true, and the next statement will be 
executed. 

If its value is O or smaller than 0, the (expression) is judged to be false, and the program execu
tion goes to the next line. 

Example: 

3 0 : I F A GOTO 8 0 

40:A=B*C 

If A> 0, "GOTO 80" is executed. 

If A~ 0, "A= B * C" on line 40 is executed. 

General form (3) IF i 
"Cha~acter" / \ "Character" / 
[Character variable] - [Character variable) 

Example: IF A$= "ABC" 
IF A$=B$ 

Execution statement 

The Computer compares the contents of "character" or [character variable) on both sides of=; 

if they are equal, it executes the next statement; if they are not equal, it moves directly to 
the next line. 

Example: 

30: IF A$= "GUARD" GOTO 1 00 

40: INPUT A$ 

If the contents of A$ are "GUARD," "GOTO 100" is executed. 
If not, "INPUT A$" in line 40 is executed. 

• When the length of "character" is more than 7, only the first 7 characters are used for com
parison, and the excess is ignored. 

General form (4) IF [ Character variable) Execution statement 

If any character is stored in the [character variable), the next statement is executed. If nothing 
is there, the program moves to th~ next line. 

61 



8. GOSUB statement, RETURN statement 

(i When you use a certain processing procedure a number of times, you will have a more efficient 
program if you handle these procedures as a sub-routine. 

When a program comes to a GOSUB statement, the Computer moves to a specified line or label 
and executes the programs stored there. 

At the end of a sub-routine you must add a RETURN statement, which returns program execu
tion to the statement immediately after the GOSUB statement. 
A subroutine can contain other subroutines, up to a maximum of 4 levels. 

(1) GOSUB statement 

General form (1) GOSUB (Expression} 

Example: GOSUB 10 
GOSUB A 

General form (2) { 
"Character" 

GOSUB 
[ Character variable) 

Example: GOSUB "ABC" 

GOSUB A$ 

The RETURN statement must be at the end of a line (it can not be followed by any other 
another statement on the same I ine. 

(2) RETURN statement 

General form RETURN 

The RETURN statement must be at the end of a line (it can not be followed by any other 
statement on that line). 

Note: An error (error code: 3) occurs, if a RETURN is used without a GOSUB earlier on. 

Also be sure to put END statement on end of main routine, else computer will go into subroutine 
and error 3 will occur. 

Example 1 

Main routine Subroutine Subroutine Subroutine 

(1st stage) (2nd stage) (3rd stage) 

~ 401: . 510: 600: 

811:G SU~450:GOtUB<-O:GiSUB600~ l 
500: RETURN 590: RETU~680: RETURN 

· 300: 
220 : GOS U B300 ---------" 1 

l ~340:RETURN 

62 



Example 2: PROGRAM 4 ( Approximate definite integral by Simpson's method) 

Formula 

Compute a definite integral by using Simpson's rule. 

X2p h s = f x. f (x)dx = 3 [(yo+ Y2pl + 4 (Y1 + Y3 + ....... + Y2p-l) 

+ 2 ( Y 2 + Y 4 + · · · · · · · · + Y 2p - 2 ) l 

I p : number of divisions I 

[Example] y = x 3 
- 2x2 

- x + 2 

y = ((x-2)x-1)x+2 

I 13 f ydx = -
o 12 

Write in the function, as a subroutine, after line 500. 

Set to PRO mode (by pressing ~ key). 

500 Y = ((x-2)*x-1)*x+2 ~ 

510 RETURN~ This ends writing. 

Next, change to DEF mode, and execute. 

Programming Note 

10: "A" : INPUT "XO="; D, "X2P= "; E, "P= "; F 
20: B=(E-D)/2/F 
30: A= 0: X = D: GOSUB 500 
40: A=Y+A:X=X+B: GOSUB 500 
50: A=Y*4+A:X=X+B: GOSUB 500 
60: A= Y + A: F=F-1 
70: IF F <> 0 GOTO 40 
80: C=A*B/3 
90: BEEP 3: PRINT "ANS.", C 

100: END 
500: Y=((X-2)*X-1)*X+2 
510: RETURN 

Some Notes to help you understand this program: 
Line 30 sets memory "A" to accumulate 'Y' values. Memory "X" is to be 'X'. Since the initial 
value of 'X' is in memory "D", first input value of "D" to "X". The GOSUBs to calculate first 'Y' 
value. 
Line 40 adds calculated 'Y' to memory "A". 'X' is incremented by 'H'. Again GOSOBs to calculate 
next 'Y' value. Now, the order of 'X' and 'Y' is of odd number. 
According to the Program we have to multiply by 4. So line 50 multiplies by 4. 
'X' is incremented and GOSUBs. 

63 



t 

Line 60 adds the 'Y' to "A". Now we are in even number order. Why don't we multiply by two? 

See second portion of line 60 and line 70. Memory "F" (in which the number of division is stored) 

is decremented by one. Line 70 compared result with zero. If not zero, we've not yet reached the 

last 'X' and 'Y' and returns to line 40 where 'Y' is added again I.E. multiplied by two. If F=O, then 

we reached the last, and according to the program the last one should not be multiplied by two, so 

program goes to next line and does the last calculation (multiply by 3/H). 

Operation Display Note 

Set to the DEF mode 

~rn XO= 

0~ X2P = (Xo) 

1 

20 

~ P= (X2p) 

~ ANS. 1.083333333 (P) 
~ 

I 
When the ~ is pressed at this step, the Pocket Computer 

starts the calculation while displaying the "RUN" symbol 

and about 40 seconds later, an answer will be displayed 

with 3 beep sounds. 

Debugging the program will help you understand its execution process. Try it. 

9. FOR statement, NEXT statement 

When you need to execute identical programs repeatedly, or when you need to solve a calcula

tion equation repeatedly by replacing only the values of variables contained in it, the FOR-NEXT 
statement will provide an efficient method. (Of course you can combine it with the decision 

function capability of GOTO and IF statements.) 

General form (1) FOR [Numerical variable] = ( Expression 1 ) TO ( Expression 2) 
NEXT [Numerical variable] 

Example: FOR A= 1 TO 26 

NEXT A 

The FOR and NEXT statements (plus numerical variables) are used as a pair, and instructions 

between these statements are repeatedly executed the specified number of times. 

In the first execution, the value of ( expression 1) is stored as the initial value in a specified 

numerical variable. 
When the Computer comes to the NEXT statement, it adds an increment of 1 to the numerical 

variable and executes the instructions between the FOR and NEXT statements and loops back to 
the FOR over and over until the numerical variable is equal to (or more than) the value of 

( expression 2). 

General form (2) 

Example: 

FOR [Numerical variable] = ( Expression 1 ) TO ( Expression 2) STEP 
{ Expression 3 ) 
NEXT [Numerical variable] 

FOR A= 1 TO 26 STEP 2 

NEXT A 

64 



This form differs only in that the STEP increment is a value other than 1 ( expression 3). 

In program execution, a· set increment is added to the [numerical variable] every execution. A 
If the value of ( expression 3) is negative, program execution occurs repeatedly until the value of W 
the [numerical variable] is equal to or smaller than the value of ( expression 2). 

• Only the integer values of ( expression 2 ) and ( expression 3) are effective and are limited to 
less than three digits. When the value of ( expression 3) is 0, an error (Error 1) occurs. 

• A FOR-NEXT statement can have up to 4 levels (or loops as to they are often called). 

40: FOR A =O TO 10-------------, 

70: FOR 8=2+1 TO 15 STEP 2 ------, 

100: FOR C=E-1 TOO STEP-1----, 

150: FOR 0=3 TO 10 I:::, ~~~, ;::, 
180:NEXT D--------~ 

220: NEXT C -----------~ 

250: NEXT 8 -------------~ 

290: NEXT A---------------

1st 
loop 

Note: When using memory locations (variables) with FOR-NEXT statements, use 23 (W) and 

after for fastest execution. 

In the following cases, an error will occur during execution. 

(Crossing) 

10: FOR A=1 TO 20-
G) 

15: FOR 8=5 TO 10 ----+----, 

20: NEXT A-----' 

25 : NEXT 8 _____ ____, 

65 

® 

Crossing of (1) and (2) 

In this case, the FOR-NEXT statement of 
G) will be executed, an error (error 4) 

will occur in the execution of line 25 

because "FOR B = 5 TO 10" on line 15 
can not be incremented (NEXT B can 

never be executed). 

--~ 



Joining in mid course 

1 O : FOR A= 1 TO 20 -
CD 

'+" 
15: 0=0+1 

20: NEXT A-----' 

25: GOTO 15-----~ 

Example: Program 5 ( Decision of order> 

Programming 

1 0: "A" CLEAR : A=5 

20: INPUT "DATA=" :D 

30: IF O=~99GOTO 50 

40:A (A)=O:A=A+1 :GOTO 20 

50:FOR B=5TO A-1 

60:FOR C=B+1TO A-1 

7 0 : I F A (B) ) =A (C) GOTO 11 0 

80: D=A (8) 

9 0 : A (B) =A (C) 

100:A(C)=D 

110:NEXT C 

120:NEXT B 

130: "B" FOR 8=5TO A-1 

140:BEEP 2:PRINT B-4•A(B) 

150:NEXT B 

160:BEEP 5:END 

Line 25 joins line 15 with the G) loop 

The result is that program execution moves 
from line 25 to 15, and generates an error 
(error 4) code as soon as it reaches line 20. 

Note 

Label A 

\ lop"1 p<ogrnm 

Label 8 

@ 
Output program 

G),@ and@ indicate the loops of FOR-NEXT statements. 

Program debugging will help you understand the process of program execution caused by a 
FOR-NEXT statement. 

66 



Flow chart 

(often flow charts are used to aid in understanding the 
flow of program execution; each symbol shape has its 

own meaning - refer 
to a programming 
guide or text for 
details) 

Note: 

When IE 99 is entered 
as data, the execution 
leaves the input loop 
and enters the order
decision loop. 

( Start ) 

NO 

NO 

[Variable] <----0 
A<---5 

c--s+1 

c-c+1 

B--8+1 

NO 

Decision of order 

Input numerical data are arranged t 
in order of their magnitudes and 
displayed in sequence. 

ACA)<----O 
A--A+1 

Preparation 

Input loop 

(Output loop is omitted.) 

End 

67 



' 

f 

10. STOP statement 

This statement is an instruction to temporarily stop program execution. 

General form STOP 

When the Computer executes the STOP statement, it displays a BREAK message together with 
line number, and stops program execution. 
Manual operation is then possible. To restart program execution, use a CONT command. 

Example: 

Example: 

100:C=3*7 
200:STOP 
300:PRINT"C=" :C 

When the STOP statement is executed on line 200, the Computer displays BREAK as shown 
below. 

Operation Display Note 

BREAK AT 200 Display of BREAK message 

w C - When program execution 

§a] 21. 
stops due to STOP state-
ment, Manual calcula-

4 IIJ8 §aJ 32. 
tions are possible. 

W [QJ LID ITJ CONT -
f 

CONT command restarts 

§a] C=21. 
program execution. 

11. END statement 

The END statement is an instruction to end program execution. 

General form END 

The execution"of this instruction causes the Computer to end program execution and display the 
prompt symbol. When you have multiple programs stored in the Computer, use END at the end 
of each program to prevent one program from flowing into the next one in sequence. 

12. BEEP statement 

The BEEP statement is an instruction to force the Computer to make a beep sound. 

General form 

Example: 

BEEP (Expression) 

BEEP 10 
BEEP A 

The Computer beeps the number of times defined by the value of (expression). 
(This value is effective only in its positive integral part.) 

13. CLEAR statement 

The CLEAR statement is an instruction to clear all data memories: fixed and flexible memories. 

General form CLEAR 

• NOTE: Program and reserve memories are protected. 

68 



14. DEGREE, RADl~N, GRAD statements 

These statements are instructions to specify the unit of angle for the input of trigonometric func
tions (SIN, COS, TAN) and for the output of inverse trigonometric functions (ASN, ACS, ATN). 

(1) DEGREE 

The statement sets the Computer's unit of angle calculation to the degree mode. 

General form DEGREE 

(2) RADIAN 

The statement sets the radian mode. 

General form RADIAN 

(3) GRAD 

The statement sets the grad mode. 

General form GRAD 

90° = !!._ [rad] = 1009 
2 

15. AREAD statement 

The AR EAD statement is an instruction to automatically store numerical value, the value of 
( expression ) or "character" in a specified variable that has been displayed before the start of 
program execution. This instruction is operational only in the DEF mode. 

General form 

Example: 

AREAD [Variable] 

AREAD A 
AREAD A$ 

This instruction is skipped, if not present at the head of a definable program. 

Example: Compound-interest computation program. 

Writing 

Programming Note 

10: "A" :AREAD I Inputting of interest rate(%) 

20: 1=1/100 
30:END 
40: "S" :AREAD N Inputting of term 

50:END 
60: "0" :AREAD p Inputting of principal 

70:END 
80: "F" :F=P* (1+1) ""N Computation of principal plus 

interest 
90:PRINT F Display of principal plus interest 

100:END 

69 

} 



' 

Execution 

Operation Display Note 

Set to the DEF mode 

6.8 ~rn ) Interest rate 6.8% 

4 ~rn ) Term 4 years 

5000 ~[Q] ) Principal DLS 5,000 

~m 6505.115547 Principal plus interest 

5 ~rn ) Term changed to 5 years 

~ITJ 6947.463404 Principal plus interest 

16. REM statement 

The REM statement is not an execution statement, it is a handy way to add notes in a program 
for reference. The program execution skips the notes, or REMarks that follows this instruction, 

going onto the following line. 

General form REM ( Note > 

Use this statement when you want to insert lines or space between programs for dividing them 

clearly (and yet have no effect on their execution). 

Example: 

80: REM * OUTPUT PROGRAM * 

In addition to program execution statements, the TRS-80 Pocket Computer can process instructions 
capable of starting program execution or displaying program contents. These instructions are called 
commands. These commands are not executed until you press the ~ key. 

1. RUN command 

The RUN command functions only in the RUN or DEF mode. Use it to start program execu
tion. 

General form (1) RUN~ 

This form starts program execution at the first line of a program. 

General form (2) RUN ( Exepression > ~ 
Example: RUN 30 ~ 

This form starts program execution at the line specified, or by the value of (expression>. 
That value is effective in its integral part, limited to 1 through 999. 

70 



Example: 

General form (3) 

Example: 

[]J[J[J[KJ 10 ~ Program execution begins at line 10. 

RUN J "Character" l ~ 
1 [ Character variable] f ENTER 

RUN "ABC" 

This form starts the program execution at the line given a label such as is stored in "character" or 
[character variable]. 

When the length of "character" and label exceeds seven characters, only the first seven characters 
are used and excess is ignored. 

Example: []] OD 00 ~ OD ITJ []] [QJ G ITJ ~ OD~ 

I 

Program execution starts at the line labeled "PRO-1 ". 

• If you use this command without a program, the Computer will merely return a prompt(>) 
display. 

• When the specified line does not exist in general form (2) or when the specified label does not 
exist in general form (3), an error ( Error 2) occurs. 

2. DEBUG command 

The DEBUG command functions only in the RUN or DEF mode. It can be used in the same 
form as RUN. However, when you use this command to execute a program, the Computer 
displays the line number as it executes each line and then goes into a break condition 

(temporary stop). 

Then, when you press the O::::: key, the Computer will advance to the next execution I ine and 
display its line number, going into break again. (Such a line-by-line execution is called debugging 
and gives you an opportunity to debug [correct errors] and/or study the program line-by-line.) 

Note: For program debugging, consult page 41. 

• The general form of this command can be defined in the same manner as the RUN statement. 

3. CONT command 

The CONT command functions in the RUN or DEF mode. It clears a temporary stop of 
program execution and CONTinues program execution. 

General form CONT[§) 

Various forms of "temporary stop" of program execution are described below: 

( 1) Break condition 

G) Temporary stop due to STOP statement during program execu
tion. 

@ Temporary stop caused by pressing @HJ (BREAK) key during 
program execution. 

@ Temporary stop accompanied by the display of a line number 
during debugging. 

(2) After the execution of a PR I NT statement (while specified contents are displayed) 

Example: 
10:A=0 
20:FOR B=1TO 3 
30:A=A+B:PAUSE B, A 
40:NEXT B 
50:END 

71 



f 

Operation Display 

Set to the RUN mode 

m rn rn OD w DEBUG -
~ 10: 
CTI 20: 
CTI 1 . 1 . 

30: 

DJ 40: 
w woo rn CONT_ 

~ 2. 3. 

3. 6. 

4. LIST command 

This command lists a program; functions only in the PRO mode. 

General form (1) LIST~ 

This form displays the first line of a program. 

General form (2) LIST ( Expression} ~ 

Example: LIST 10 

Note 

Inputting a CONT 
command 
Execution of the CONT 
command (continuing 
after temporary stop) 

I 

This form displays the program line specified by the value of (expression}. 
(The value is operative only in its positive integer part, limited to 1 through 999.) 

General form (3) T { "Character" l ~ 
LIS [Character variable] f 

Example: LIST "ABC" 

This form displays the program line with the label identification stored in "character" or 
[character variable) . 
When the length of "character" and label exceeds seven, only the first seven characters are used, 
any excess is ignored. 

Example: 

10:A=0 
20:FOR B=1TO 3 
30:A=A+B:PAUSE B. A 
40:NEXT B 
50:END 

72 



Operation ,. Display Note 

Set to the PRO mode 

IT] [IJ w IT) LIST -
~ 10:A=0 Display of the first line 

ITJ CO w ITl 3 0 LIST30_ 
~ 30:A=A+B:PAUSE B•A Display of line 30 

• Recall an arbitrary line by LIST and then you can display preceding and following lines using 
the [I] or OJ key. 

• When programs use more than 24 characters on one line, they are displayed beginning with 

the first number/character on the left. To display the remainder of the line, use [8 key. 
• When the specified line does not exist an error (Error code: 2) occurs. 

5. NEW command 

The NEW command clears all programs, reserve programs and data (but not reserve memories). 

General form NEW~ 

(1) DEF, RUN and PRO modes 
The execution of a NEW command in these modes clears all program and data memories. 
(but not reserve memories) -

(2) RESERVE mode 
The execution of a NEW command in th is mode clears all reserve memories (but not 

program and data memories). 
• The prompt symbol appears after execution of this command. 

6. MEM command 

This commmand displays the number of program steps and flexible memories, so you can tell 

how much memory you have used up and how much you have available. 

General form MEM §) 

This command functions in all modes. 

Example: The execution of a MEM command with all program memories cleared. 

Operation Display Note 

PRO mode 

[}[] w Qi[] ~ ) 

00 w 00 ~ 1424STEPS 178MEMORIES * 

* The displays shows that you have space for 1424 steps or that a maximum of 178 memories 

can be used as flexible memories. 
One flexible memory corresponds to 8 steps of program. 
Thus, if you load a program with 8 steps or less, the number of flexible memories will be reduced 
by one (if a program uses 9 through 16 steps, that takes up two flexible memories, etc.). 

• The displayed number of memories does not include the 26 fixed memories. 

73 



( 

You can use your TRS-80 Pocket Computer along with a cassette tape recorder as an external 
memory storage unit by using the optional Cassette Interface 26-3503. This will enable you to 
record programs, reserve programs and the contents of data memories stored in the Computer on to a 
magnetic cassette tape. Also, you can read them out of tape, as well as compare the contents 
recorded on the tape with the contents loaded in the Computer. 
Giving file names to all recordings (programs, reserve programs and data) the Computer provides an 
automatic search when reading them out. 
For instructions on operating the tape recorder, refer to page 93. 

1. CSAVE (Cassette save) statement 

The CSA VE statement is an instruction to record programs or reserve programs on a magnetic 
tape. This statement can only be executed manually. 

General form: CSAVE "File name" ~ 

If the length of file name is more than 7 characters, the excess is ignored. 
This is true of all magnetic tape control instructions. 

In DEF, RUN and PRO modes 

The CSAV E instruction commands the Computer to first record the specified file names on a 
magnetic tape and then the entire stored program identified by that file name. 
However, if the memory has no programs, the prompt symbol appears on the display. 

Example: PRO mode "PROG.-1" is recorded on tape as the file name, 
plus all the identified program lines. CSAVE "PROG.-1" ~ 

In RESERVE mode 

The CSAVE instruction forces the tape recorder to record specified file names and then all the 
reserved programs. 
However, if the memory has no reserve programs, the display shows the prompt symbol. 

Example: RESERVE model "RESRV-1" is recorded as the file name along with 
CSAVE "RESRV-1" ~ all reserve programs. 

IBy executing a CLOAD? statement (mentioned later on) after executing a CSAVE state-] 
ment you can check that programs have been accurately recorded. 

Note: You must avoid recording programs given the same file name - but different in 
contents - on the same side of the same tape, otherwise the reading (transferring) 
of wrong contents may occur in the execution of a CLOAD or CHAIN statement. 
Do not record programs with the same file-names on the same side of the tape. (Or 
you may end up with the incorrect data or program.) 

74 



Also do not allow program recordings to overlap (even slightly); either or both programs may be 
full of errors. 

2. CLOAD (Cassette Load) statement 

This statement is an instruction to transfer (load in) programs or reserve programs from a mag
netic tape into the Computer. This instruction can only be executed manually. 
When transferring programs, rewind the tape to the portion of tape where they are recorded, 
then execute this instruction. 

General form CLOAD "File name" ~ 

In DEF, RUN and PRO modes 
This instruction makes an automatic reference of specified file names and transfers the corre
sponding programs from the magnetic tape to the Computer. 

Example: PRO mode 
CLOAD "PROG.-1" ~ 

In RESERVE mode 

A program on the magnetic tape whose file name is 
"PROG .-1" is found and transferred to the pro
gram memory. 

This instruction makes an automatic reference of specified file names and transfers the corre
sponding reserve programs from the magnetic tape to the Computer. 

Example: RESERVE mode 
CLOAD "RESRV-1" ~ 

A reserve program on the tape whose file name is 
"RESRV-1" is found and transferred to the reserve 
memory. 

Note 1. The Computer cannot decide whether a certain file name refers to a program or reserve 
program. Therefore, an improper mode selection leads to an improper transfer: reserve 
programs to the program memory or programs to the reserve memory. 

2. If file names you specify are not on the magnetic tape, the Computer continues to 
search for the absent file names even after the tape has come to an end. 
(In this case, cancel the instruction by pressing the [Qfil key.) 
This is also true of CLOAD?, CHAIN, and INPUT# statements described later. 

3. If an error is encountered during the transfer of programs, only the program memory is 
cleared. This is also true of a CHAIN statement (discussed later). 

3. CLOAD? (Cassette Load?) statement 

The CLOAD? statement is an instruction to check the contents of the program or reserve memo
ry inside the Computer with the recording on the magnetic tape that shares the specified file 
name. This instruction can only be executed manually. 
If the above check is not good, an error (error code: 5) occurs. 

75 



(When making a CLOAD? check, rewind the tape to the portion of the tape that is to be t checked, then execute this instruction.) 

' 

General form CLOAD? "File name" ~ 

In DEF, RUN and PRO modes 
This instruction checks the contents of program memory against the recorded programs on 
the magnetic tape (specified file name only). 

In RESERVE mode 
This instruction checks the contents of reserve memory against the recorded programs on the 
magnetic tape (specified file names only). 

• When the program memory is loaded with nothing in the DEF, RUN or PRO mode or when 
the reserve memory is loaded with nothing in the RESERVE mode, the execution of a 
CLOAD? statement will display only the prompt symbol. 

4. CHAIN statement 

The CHAIN statement is a program execution instruction. When the Computer comes to this 
instruction during program execution, it automatically searches programs recorded on a magnetic 
tape for the specified file names and transfers those programs to its program memory. 
With the CHAIN statement it also starts execution of the tranferred programs at the line spe
cified. 
In other words, if you use this instruction, even programs long enough to exceed the capacity of 
the Computer's program memory can be read out to the Computer in sequence to be executed. 
These programs of course must be divided in some manner so they can be stored individually in 
the Computer's memory (while executiori takes place). 
( Rewind the tape and then execute specified programs.) 

General form (1) CHAIN "File name" 

Example: CHAIN "PR0-1" 

The instruction tells the Computer to execute a transferred program from the beginning. 

76 



Program 
"PR0-1" 

Program 
"PR0-2" 

Program memory 

Execution 

CHAIN "PR0-1" 

Program "PR0-1" is 
automatically read into 
the Computer with the 
instruction (CHAIN 
"PR0-1''.). 

Execution 

CHAIN "PR0-2" 

Program "PR0-2" is 
automatically read into 
the Computer with the 
instruction (CHAIN 
"PR0-2"). 

Execution 

Magnetic tape 

(", "indicates the position of the tape 
l' recorder head.) 

File name 
"PR0-1" 

File name 
"PR0-1" 

File name 
"PR0-1" 

,. 

File name 
"PR0-2" 

File name 
"PR0-2" 

File name 
"PR0-2" 

,. 

If each program is arranged to end with a CHA IN state
ment as shown above, a new program can be automatically 
transferred from the tape and executed in succession every 
time the preceding program is completely executed. 

77 



t 

' 

General form (2) CHAIN "File name", ( Expression) 

Example: CHAIN "PRO-1", 30 

This form starts the execution at the line specified by the value of (expression) contained in a 
transferred program. 
The value of (expression) is effective only in its integer part, limited to positive numbers from 1 
through 999. 

General form (3) l "Character" 
CHAIN "File name", \ 

[ Character variable] 

Example: CHAIN "PR0-1", "A" 

Th is form starts the execution at the I ine given the same label as the contents of "character" 
or [character variable] contained in a transferred program. 
The length of "character" or label is effective up to seven characters (excess is ignored). 

Example: A program given file name "ABC" is transferred 
from the magnetic tape to the program memory, 

100: CHAIN "ABC" and is executed from its beginning. 

Example: A program given file name "XYZ" is transferred 
from the magnetic tape to the program memory and 

200: CHAIN "XYZ", 10 executed from line 10. 

5. PRINT # (Print cross-hatch) statement 

The statement PRINT# is an instruction to record the contents of data memories on a magnetic 
tape. This statement can be executed both by program and manual operation. (Executable in 
the DEF and RUN modes) 

General form ( 1) PRINT# "File name" 

Example: PRINT #"DATA 1" 

This form tells the Computer to record "file name" and then record all the contents of data 
memories in sequence starting with fixed memory A (or A$). 

General form (2) PRINT# "File name"; [Label of variable] 

Example: PRINT #"DATA 1"; A(5) 

This form commands to first record file names on a magnetic tape and then record the contents 
of specified data memory. 
The [label of variable] is specified by characters A through Z or in the form of A ( ). In the 
latter case, however, material in parentheses is limited to positive integers from 1 to 204, or to 
fixed memories. (If program memories loaded with program are specified as flexible memories, 
an error occurs.) 
This method of specification also applies to the INPUT# statement described below. 

A PRINT #statement must always end with ~. when executed manually. 

Example: Manual execution 

PRINT# "DATA-1" ~ 

Example: Program execution 

150: PRINT# "DATA-1 "; A(26) 

"DAT A-1" is recorded as file name, and the 
contents of data memory no. 1 (memory A or 
A$) and all subsequent that can be specified as 
flexible memories are all recorded in sequence. 

"DAT A-1" is recorded as file name, and the 
contents of data memory no. 26 (memory Z or 
Z$) and all following are recorded in sequence. 

78 



6. INPUT# (Input ~rnss-hatch) statement 
The INPUT # statement is an instruction to transfer data recorded on a tape to the data memory 
of the Computer. This statement can be executed both by program and manual operation. 
(Executable in the DEF or RUN mode) 
(Rewind the tape before executing this instruction.) 

General form (1) INPUT #"File name" 

Example: INPUT# "DATA 1" 

This form commands the Computer to automatically search for specified file names and loads 
data memory no. 1 (A or A$) and all following, in sequence with the corresponding recorded 
data. 

General form (2) INPUT #"File name"; [Label of variable] 

Example: INPUT #"DATA 1"; A(5) 

The form compels the Computer to search for specified file names automatically and loads the 
data memory specified by [label of variable] and the following, in sequence, with recorded data 

corresponding to the specified file names. 

Example: Execution through manual 
operation 

INPUT #"DATA-1" ~ 

Example: Execution through program 

50: INPUT #"DATA-1"; A$(26) 

Recorded data whose file name is "DATA-1" 
is put in data memory no. 1 and all after in 
sequence. 

Recorded data whose file name is "DATA-1" 
is put in date memory no. 26 and all after in 
sequence. 

• The Computer can distinguish and transfer file names recorded as programs and as data eve.n 
if they are identical. 

Note: If the number of recorded data is smaller than that of data memories to be loaded, the 
execution activated by the INPUT # statement ends as soon as all the data are trans

ferred. 
Also, all data will be transferred until all the data memories are loaded, and then execu
tion will end even if there is more data. 

79 



( 

f~T"'Zftt'SfA:tf~ t Z 

Up till now we've only discussed how to program one key at a time. But the Pocket Computer has a 

very powerful feature which allows you to use just one key for an entire program or function which 

you use frequently. The reserved key function can be used for manual calculations as well as 
in programs. 
For example, you assign W 00 [I] [JO CT] to the W key for reserve, all you have to do is 
press ~ CA: 1 to have the Computer print the required data. 

The following keys are available for reserve: 

rn, m, rn, m, 
w, CYL OCL 00, 

QC, OLL CTI , 

00, ~ 

1. Reserve memory for reservable keys 

The total numbers of steps allocated for reservable keys are 48. If the contents of one or more 
reservable keys exceed 48 steps, error 4 (insufficient memory) occurs. 

To write reserve programs, select the RESERVE mode and follow the same procedures as in 

manual calculations. 

(1) Preparation 

Before writing a new reserve program clear the reserve memory using a NEW command. 
However, if you are writing reserve programs to follow in sequence one or more already 

written, there is no need to use NEW. 

[ Precedures] 

(1) Select the RESERVE mode. 

(2) oo w cm ~ 
NEW clears the entire reserve memory. 

(2) Writing 

Example: Reserve the following key operation: 

"COS" to W 
"A*A+B*B"to[]J 

"RUN 130" to W 

80 



Writing 
,. 

Operation Display Note 

Set to the RESERVE mode 

rn rn oo ~ ) 
Colon is displayed 

Reserve memory is cleared. 

r automatically. 

~rn A: Key is specified. -
WWW A:cos Input -

~ A:cos Writing (the cursor 
disappears) 

~rn s: - Key is specified. 

rn rn rn rn rn rn rn S:A*A+B*B_ Input 

~ S:A*A+B*B Writing 

~rn z: - Key is specified 

CKJ OD 00 OJ DJ w Z:RUN130_ Input 

~ Z:RUN 130 Writing 

• When the reserve memory (48 steps) is full, pressing the ~ key causes an error. (Error 
code: 4) 

2. Use of reservable keys 

The reservable keys are used in the PRO or RUN mode. 

Example 1: Manual calculation by using the reservable keys to which reserve programs hav.e 

been assigned programs as written above. 

Operation Display Note 

Set to the RUN mode. 

Set the angular mode to DEG Degree is specified. 

~rn cos 
60 cos 60_ 

~ 0. 5 

WGJ32~GJ A=32 • _ 

OOGJ53~ 

~W A*A+B*B-

81 

53. 

· 3 8 3 3. 32' +53' = 



f 

Example 2: Writing and execution using the reservable keys as assigned above. 

Operation Display 

Writing 

Set to the PRO mode 

130ITJCKJwo.orn 1 30 INPUT_ 
rn~wrn 130 I NPUTA, 8_ 

~u.J[QJ~ 130: INPUT A•B•D 

140W@ CGITJ 1 4 OC=J (_ 

Note 

I 
Law of cosine 

C=/a 2tb 2-2ab case 

~W 140C=J(A*A+B*B_ 

Gwrnrnoo 1 40C=J (A*A+B*B-2*A*

rnoo~rn 0C=✓ (A*A+B*B-2*.A*B*COS _ 

[]JITJ~ 140: C=JCA*A+B*B-2*A*B* 

150wwo:JCKJCO 1 50PR I NT_ 

Recall of reserve 

Recall of reserve 

W~ 150:PRINT C 

160 ITJ [K] [QJ ~ 1 6 0 : E N D 

Execution 

Set to the RUN mode 

Set the angular mode to DEG 

~rn RUN130_ 

~ ? 
(When A= 10) 10 ~ ? 
(When B = 12) 12 ~ ? 

Program execution 
starts. 

(When D = 60) 60 ~ 11. 13552873 

Example 3: When using reservable keys in the course of manual calculation or programming. 

Operation Display 

Set to the RUN mode 

5 rn 6 rn 60 5 * 6 * 6 o _ 

GJ GJ ~ OBfil 5 * 6 * 8 6 0 

~W 5*6*COS 60 

~~0Bfil~8BE 5*6*::::::::;cos 60 

~,s1 5*6*A*A+B*BCOS 60 

~[I@] 

~OBfil~OBfil 5*6*A*A+B*B*::::::::::::60 

Note 

Adding one space 

COS is inserted as 1-step 
instruction. 

Two-step space 

When the number of reservable 
key steps to be inserted is 
larger than the ::odes, the 
necessary number of steps 
are secured to insert the 
remaining code. 

Three-step space 

~rn 5*6*A*A+B*B*COS 8860 Whenthenumberofreservable 
key steps to be inserted 

82 

is smaller than the insertion 
codes, the empty insertion 
codes are filled with nothing. 



3. Checking reserve, programs 

To check what information is assigned to reservable keys, specify those keys in the RESERVE 
mode. 

Example: Checking reserve programs written in [KJ , W , [QJ and W as above. 

Operation Display Note 

Set to the RESERVE mode 

~rn A:cos Display of reserve. 

~w S:A*A+B*B Display of reserve. 

~rn o: - When nothing is reserved 

~rn Z:RUN 130 Display of reserve 

4. Correction of reserve programs 

If you need to correct written reserve programs or use different key operations: 

Example: "A: COS", "S: A *A+ B * B" and "Z: RUN 130" as reserved above are to be 
changed to "A: SIN", S: LOG A" and "Z: RUN 50." 

Operation Display Note 

Set to the RESERVE mode 

~rn A:cos Recal I of reserve 

Bl A:oos Recall of cursor .. 
rnrnoo A:SIN_ Inputting through keys 

~ A:SIN Writing 

~rn S:A*A+B*B Recall of reserve 

[8 S:A*A+B*B Recall of cursor 

rn rn w rn S:LOGAB*B Inputting through keys 

l§.Eg l§.Egl§.Eg S:LOGA Unnecessary instructions are 
- cleared by spacing. 

~ S:LOG A None of spaces are written in 
the reserve memory. 

~rn z:RUN 130 Recall of reserve 

[8[8 Z:RUN 130 The cursor moves 

rn wl§.Eg Z:RUN 50 - Inputting 

~ z:RUN 50 Writing 

83 

~ -·~ 



, 

5. Deleting reserve programs 

(As you know, [][] w CY[] ~ key clears all reserve memories, but here is how you delete 

just one.) 

Example: To delete "RUN 50" reserved for W . 

Operation Display Note 

Set to the RESERVE mode 

~rn Z:RUN 50 Recall of reserve 

~ Z:RUN 50 Recall of cursor 

~ z: 50 } All instructions are 

~~ z: replaced with spaces. 
-

~ ) Reserve is deleted and 
prompt symbol appears. 

6. Configuration of reserve programs 

Example: Operation CE [IJ 00 W [±] W [Q] W CK:; is reserved for [A] key. 

2 3 4 5 6 +- Step no. of reserve memory 

A:SIN-A+COSB 
L Reservable key label 

Operation OJ[][] [eJ OD [I] is reserved for [[] key. 

2 +- Step no. 

B: INPUT 

L Reservable key label 

The labels of keys are also placed in reserve memory (such as [A] and [ID ), each of which 
takes 1 step of space. (Colons after key labels are not placed in the reserve memory.) 

84 



If you attempt to execute statements or programs which the Computer cannot process (such as 
words not defined by the Computer or incorrect operations) an error wil I occur. The Computer 
displays an error code and stops execution. 

Example 1 

Operation Display 

RUN mode 

5 GJ[D3 5+*3 -
~ 1 . 

!El 5+*3 

In this example, * results in a syntax error (improper computer "grammar") which produces the 
error symbol. 
If you press the [E] or ~ key, the input contents will be displayed with the cursor positioned at 

* (where the error occurred). 

Example 2 

30: A=5+* 3 

Operation Display 

RUN mode t Line number r- Error code 

30: 1 . 

rn 30:A=5+*3 
) L Error position 

In this case, the Computer displays the line number where the error occured, along with an error 
code. 
If you press the [I] key, the position where the error occurred is marked by the cursor; the 
display will remain only while you hold down [I] key. (When you release [I] the prompt 
symbol (>) will appear.) 
To correct this error, press the ~ key to select the PRO mode and press the :::I] or OJ key to 
display the program for correction. 

To clear an error in manual operation, use the [QR] or [ill key. For other errors (except for 
exceeding program memory capacity and error code 5) you can also use the !El or ~ keys. 
If you encounter an error during program execution, clear using the [QR] , ~ or OJ keys. 
(An error encountered during the execution of a CHAIN statement cannot be cleared using the OJ 
key.) 

85 

-

1!,. 
Ii~ 



Table of Error Codes 

Error code Nature Description 

• Grammatical • Occurs when the absolute value of a calculation 

(syntax) error result exceeds 1 x 10100
, or when the divisor is 0. 

• Operational • Occurs when memories to which numerical values 
1 

error are assigned are specified as character variables or 

• Error in memory vice versa. 

specification 

2 Line error • Occurs when lines and labels specified by GOTO, 

GOSUB, RUN, DEBUG or LIST statements do not 

exist. 

3 Level Error • Occurs when the level exceeds 4 stages in a 
GOSUB statement or FOR-NEXT statement. 

• Occurs when you try to execute a RETURN 

statement without a preceding GOSUB statement. 

• Occurs when you try to execute a NEXT state-
ment without a mating FOR statement. 

4 Insufficient • Occurs when you try to write programs with more 

memory steps than the remaining available program 
memories. 

• Occurs when you try to write more reserve pro-

grams steps than can fit the available remaining 

reserve memories. 

• Occurs when existing dimension memories are 
specified and there is insufficient memory left. 

5 Control error of Occurs when an error occurs during the execution of 

magnetic tape magnetic tape control instruction. 
(Verify error, check-sum error, etc.) 

6 Error in format Occurs when a display of numerical data is not in 

specified format when used with PRINT or PAUSE. 

86 



The remainder of this Manual includes reference information for your TRS-80 Pocket Computer. 

87 



Model: 
Number of calculation digits: 
Calculation system: 

Program system: 
Program language: 
Capacity: 

Stack: 

Calculations: 

f Editing function: 

External memory function: 

Memory protection: 

Display: 

Component: 

Power supply: 

Power consumption: 

Operating time: 

Operating temperature: 

Dimensions: 

Weight: 

Accessories: , 

TRS-80 Pocket Computer 
10 digits (mantissa) + 2 digits (exponent) 

According to mathematical formula (with priority judging func
tion) 

Stored system 
BASIC 
Program memory; 
Data memory; 

Reserve memory; 

Input buffer; 
For data; 
For function; 
For subroutine; 
For FOR-NEXT 

1424 steps maximum 
26 Fixed memories 
178 Flexible memories, maximum (shared 
with program memory) 

48 steps maximum (up to 18 different 
reserve programs) 
80 characters 
8 steps 
16 steps (in parentheses, 15 levels) 
4 levels 

statement; 4 loop-levels 
Four arithmetic calculations, power calculation, trigonometric and 
inverse trigonometric functions, logarithmic and exponential func
tions, angular conversion, extraction of square root, sign function, 
absolutes, integers, and logical calculations. 
Cursor shifting ( ► ◄) 

Insertion (INS) 

Deletion (DEL) 
Line up and down ( 'i , ! ) 

By using the optionally available TRS-80 Cassette Interface < 26-
3503 ) , program, reserve program, and data memory can be record
ed or read out to or from magnetic tape (tape recorder). 

CMOS battery back-up 
(program, data and reserve memories are protected) 

24-digit alphanumeric dot matrix liquid crystal display 
CMOS LSI, etc. 

5.4V, DC: 
4 mercury batteries (Type 675, Radio Shack Cat. No. 23-1521) 
5.4V, DC: 0.011W 
5.4V, DC: 0.013W (with Cassette lnteface) 
Approx. 300 hours on mercury batteries (Type 675) 
ambient temperature: 20°C (68°F). 
The operating time changes slightly depending on the type of 
battery and usage. 
0°C~40°C (32°F ~ 104°F) 
175(W) x 70(0) x 15(H) mm 
6-7/8"(W) x 2-3/4"(0) x 19/32"(H) 
Approx. 170g (0.37 lbs.) 
Carrying case, four mercury batteries (built-in), two keyboard 

templates. 

88 



When the battery indicator is not lit (upper right hand corner of display), replace the mercury 
batteries (type 675). 
1. Turn off the Computer. 
2. Remove the screws from the back cover with a small screw driver (Fig. 1). (Note that two types 

of screws are used.) 
3. Replace the batteries as shown in Figure 2. 
• Use a dry cloth to wipe off the surface of the new batteries before installing. 
• Always replace all 4 batteries at the same time. 

Batteries are available from your local Radio Shack store, Cat. No. 23-1521 
4. Hook the tabs of the back cover into the slots on the Computer. 
5. Push the back cover in slightly while replacing the screws. (Fig. 3) 

6. Push the Reset switch on the back cover to clear the Computer. (Fig. 4) 

Use a ball-point pen to press the Reset switch. 
7. Press the [QIT] and @ill keys to clear the Computer. When the batteries are correctly intalled 

">DEG RUN • "will be displayed. 

Screw (long) 

Fig. 1 

®--~-side 

~~~ 
+ side must be up

Fig. 2

NOTE: Do not dispose of batteries in a fire.

Fig. 4

Fig. 3

Only a little pressure is needed. Do not use a
pencil or other material that could break and
leave a residue.

IMPORTANT: The batteries must be of specified type (675). When other type, such as 675E
batteries are used, the display operation will become improper.

89 '

,,

· GONNECTING THE GASSETTE INTEB6ACE, ,,
•"" I ~ i"', o,,;, ' ' ; : ~ {

You can obtain the optional Cassettle Interface for the Pocket Computer by ordering Cat. No.
26-3503. Using this Casstte Interface will allow you to store programs and data from the Pocket
Computer onto standard cassette tapes (of course you'll also need a Cassette recorder such as we sell
for this Pocket Computer system -- check with your local Radio Shack store). Once on tape, you
can load these programs and data back into the Computer with a simple orocedure.

Replacing the Batteries

If Remote countrol of the Cassette recorder is not functioning normally when using the Cassette
Interface, it's time for fresh batteries.

Three "AA" penlight cells.

Notes: • Once a year you should replace the batteries in the Cassette Interface. Use only the
Alkaline type (they maintain their voltage for a longer period of time).

• Always replace all three batteries at the same time.
• Never leave weak or dead batteries in any battery-operated device (they can leak

damaging chemicals). If you are not going to use the Interface for a month or more,
remove the batteries.

90

Connecting the Pocket Computer to the Cassette Interface

1. Turn off your Pocket Computer by pressing [QITJ key.
2. Remove the cover from the left side of your Computer, and snap it into place on the bottom of

the Cassette Interface.

Pocket Computer
Cassette Interface

3. Fit projecting parts on the Cassette Interface in the grooves of the Computer as shown below.

L======-C':o·.J w
l/

_;

".,. .. mark

4. Slide the Pocket Computer carefully to fit securely onto the Cassette Interface (match triangular
marks (•)on the Computer and Cassette Interface).

(b) Down

~~ ll==::=====----____J
+(cl Left

(a) Toward you ,.
I--___:=~~=========, ..,j~---- Align this surface with mating

'surface of the Interface. Make
a close contact.

".,.,. mark

91

'

5. If parts do not mate properly, do not force. Carefully shift Computer left or right to be sure t all mating surfaces are correct.

Note: Before attaching or removing the Computer from the Interface, be sure to turn off the
Computer with the [QITJ key. If the Computer is connected or disconnected with power
ON, all keys may be inoperative. In this case, press the ALL RESET switch on the bot
tom of the Computer. This will clear the entire Computer.

\

~_____Black plug (REM)

Red plug (MIC)

Gray plug (EARPHONE)

t Connecting the Cassette Interface to a Tape Recorder

Only three connections are necessary:

r
'

1. Connect red plug into the MIC jack on the Cassette Recorder.
2. Connect gray plug into the EArphone jack on the Recorder.
3. Connect the black plug into the R EMote jack on the Recorder.

While most Cassette Recorders can be used for Recording and Playing back programs and data for

the TRS-80 Pocket Computer, we urge you to use one of the Recorders we recommend (such as our
CTR-BOA or Minisette-9).

CTR-80A Minisette-9

92

Recording onto magnetic tape

See Tape Notes on page 101.

1. Enter a program or data into the Computer.

2. Load tape into the tape recorder.
Determine the position on the tape where you want to record the program.
• When using a tape, be sure the tape moves past the clear leader (non-magnetic mylar mate

rial).
• When using a tape already partially recorded, search for a location where no recording is.

3. Connect the Interface's red plug to the tape recorder's MIC jack and the black plug to the
REM jack.

4. Simultaneously press record and play buttons on the tape recorder (to put it in record mode).
(The tape recorder will be stopped.)

5. Input recording instructions (CSAVE statement, PRINT # statement), and press the ~
key for execution. (For CSAVE and PRINT #see pages 74 and 78.)

To record the program:

First press the ~ key to set the unit to "RUN" mode (or "DEF" mode). Next push the
following keys: WW [A] CT] IT]~ [TI] FILE NAME ~QI]~-
(To write the contents of data memory onto tape, push as follows;

rn rn rn oo rn ~ w ~-l
Eg. "RUN" mode ~WW CT] W ~ QC; WW §TI QI]~

When you press the ~ key, tape motion will begin, leaving about a 6-second none-signal
blank. (Beep tone is recorded.) After that, the file name and its contents are recorded.

6. When the recording is complete, the PROMPT symbol (>) will be displayed and the tape re
corder will automatically stop. Now you have your program on tape (it still is in the Pocket
Computer also).
When data is to be automatically recorded by program execution (PRINT# statement, not
manual operation), set up steps 1 thru 4 before executing the program.

To aid you in locating programs on tapes, use the tape counter on the recorder.

Loading from a magnetic tape

See Tape Notes on page 101.
To load, transfer, or read out programs and data from magnetic tape into the Pocket Computer,
use the following procedure.

1. Load tape in the tape recorder. Position tape just before the portion to be read out.

2. Connect the gray plug to the EAR jack on the tape recorder, and the black plug to the REM jack
jack.
[In using a tape recorder having no REM terminal, press the PAUSE button to make a temporary
stop.]

3. Push the PLAY button on the tape recorder (to put unit in playback mode). (The tape should
be stopped.)

93

1

,

Set the VOLUME control to 6 to 8.

Set Tone to maximum treble (10).
4. Input transfer instructions (CLOAD statement, INPUT # statement), and press ~ key for

execution. (See pages 75 and 79.)

To transfer the program:
Put the unit into "RUN" mode (or "DEF" mode) with the ~ key. Then push the following
keys; IT] W [Q] W W ~ OD FILE NAME ~ OD~. (To load the contents
of the data memory, push as follows; [TI 00 W OD CT] ~ W ~ .)

Eg. "RUN" mode IT] W [Q] W [QJ ~ OD W W ~ OD ~

The specified file name will be automatically searched for and its contents will be transferred
into the Pocket Computer.

5. When the program has been transfered the Computer will automatically stop the tape motion
and display the PROMPT (>) symbol.

To transfer data (CHAIN statement, INPUT # statement) in the course of execution of a
program, set up steps 1 thru 3 prior to executing the program.

Notes:• If an error occurs (error code "5" is displayed), start over from the beginning. If the
error continues, adjust volume up or down slightly.

• If the error code is not displayed but tape motion continues (while the Pocket Com
puter displays the symbol "RUN"), transferring is improper. Press @ill key (to
"break") to stop the tape. Repeat steps.

• If the error remains or the tape continues to run after several attempts to correct the

problem, try clearning and demagnetizing the Recorder's tape head (see Recorder's
Owners Manual).

Program Verification

See tape Notes on page 101.
After loading or transferring a program to or from tape, you can verify that the program on
tape and program in the Pocket Computer are identical (and thus be sure that everything is OK
before continuing your programming or execution of programs).

1. With cassette in the recorder, operate the tape motion controls to position tape at the point
just before the appropritate file name to be checked.

2. Connect gray plug to EAR phone and black plug to R EMote jacks.

3. Press PLAY button of recorder.

4. Input a CLOAD? statement and start execution with ~ key. Do this as follows: Press

~ key to set unit to "RUN" (or "DEF" mode).
Enter the following key sequence -

wwCQJww~rn~ODwm~OD~
The Pocket Computer will automatically search for the specified file name and will compare
the contents on tape with the contents in memory.

5. If the programs are verified as being identical, a prompt symbol will be displayed on the Pocket
Computer.

If the programs differ, execution will be interrupted and an Error code 5 will be displayed.
If this occurs, try again.

94

Editing Programs o~ Magnetic Tape

You can use the Pocket Computer to Edit and merge Programs on tape by using the CLOAD I
statement.

G)
Program

A

Program
memory

s

Program

A

Program

C

Program

B

Program
C

\ I

0

Program A

t+--

G)

Program A I

Program

C
Program

D

Program B Program C Program D s
Magnetic tape

0 CD Write each program

puter.

0 Save each program

tape.

0
Note:

® Load each program

Computer.

Program B I Program C I Program D

95

into the Com-

onto magnetic

You can use

apes. several t

back in to the

I)

'

('

CLOAD 1 statement

f This statement is an instruction to transfer (load) programs from magnetic tape into the Computer.

t

,

The program from magnetic tape is loaded into the program memory in addition to programs
already stored in the Computer.

General form CLOAD 1 "File name" ~

1. DEF, RUN and PRO mode

The CLOAD 1 instruction automatically references specified file names and transfers the cor
responding programs from magnetic tape into the Computer's program memory, along with
programs already stored in memory.

Example: PRO mode

CLOAD 1 "PROG-2" ~

Contents of the program memory

PROG.-1

Before
loading

2. RESERVE mode

..

Same as for CLOAD statement.

PROG.-1

PROG.-2

After
loading

• When the statement "CLOAD 1" is entered with the ~ key, the statement is converted to a
2-step code. When the statement is recalled, one space is automatically -displayed between
"CLOAD" and "1 ".
The abbreviation for "CLOAD 1" is "CLO. 1" or "CLOA. 1".

Editing and execution of multi-program forms

The line numbers of each program must be arranged in numerical order.
The following example will help to explain this function.

96

File name
"PROG-1" ➔

File name
"PROG-2" ➔

Program correction

5

20

30

100

200

300

10

20

30

100

200

500

Ji. AJ..

GOTO 500

• B •

GOTO 30

GOSUB • C•:

A= 100

• D•

GOTO 5

• C•

GOTO 30

GOTO • B •

END

You can insert or delete a program line in the final program only.

RETURN

In the above example you can only edit or correct parts of "PROG.-2" program.

100 GOTO 30

150 PRINT A, B

200 GOTO ''B''

500 END

97

..

-~

Checking the program

f Set the Computer in PRO (program) mode.

t

,

1. LIST (Expression) ~

• Displays the starting program line corresponding to the contents of the (expression) by search
ing all the program lines from the starting point of the program presently stored in memory.

• An error (error code: 2) will occur when the program has no program line corresponding to the
-contents o f (E) h th t t f (E) . II th th I" b xpress1on , or w en econ en so xpress1on 1s sma er an e 1ne num er

at which program search begins.

Key opration Display

LIST 30 ~ LIST 30 -

30: ''B''

LIST 500 ~ LIST 500 -

500: END

L......,;. LIST 10 ~ LIST 10

2

2. Display of the next or preceding program line by pressing the DJ or [LI key during program
line display.

Key operation Display Note

30: ''C'' RETURN

[I] 20: GOTO 5

[I] 10: ''D"

[I] 300: A= 100 Preceding program

rn 10: ''D"
Starting point of the
next program

[I] 300: A= 100

98

Execution of the program

(Program execution by using the RUN and DEBUG command.)
Set the Computer to the DEF or RUN mode.

RUN (DEBUG) (Expression) ~

Executes the starting program line corresponding to the contents of the (expression) by seaching
all the program lines from the starting point of the program presently stored in memory.

Error conditions are the same as for "LIST (Expression) ~ "

Key operation Execution start line

RUN ~ 5 •A•

RUN 30 ~ 30 • B •

RUN 10 ~ Error (Error code: 2) occurs.

RUN ~•B ~·~ 30 " B"

DEBUG ~ • D ~ • ~ 10 "D"

GOTO statement, GOSUB statement

• If the contents of the (Expression) is smaller than the program line which is being executed
now, the program jumps to the desired program line by searching from the present line back
to the starting point.
If larger, the program jumps to the desired program line by searching from the present line to t~e
final line.

• An error (error code: 2) will occur when the program has no program line corresponding to the
contents of (Expression), or when the contents of (Expression) is smaller than or larger than
the line number where program search begins.

99
\

I

,
'

Program Note

~5 ''A''

20 GOTO 5007 Jumps to line 500 of "PROG-2"

r----+30 "B''

50 GOTO 150 Error occurs (code: 2)

"PROG.-1" 100 GOTO 30_j Jumps to line 30 of "PROG.-1"

200 GOSUB "C'7:,
Jumps to line 30 of "PROG.-2"
with sub-routine.

300 A= 100

10 ''D"

20 GOTO 5_j Jumps tG> line 5 of "PROG.-1"

r+30 "C" RETURN- Jumps to line 200 of "PROG.-1"
with sub-routine

"PROG.-2" After the program jumps, it returns to
the next statement.

100 GOTO 30...l Jumps to the line 30 of "PROG.-2"

150 PRINT A, B

200 GOTO "B'.:....l Jumps to the line 30 of "PROG.-1"

300 GOTO 7 Error occurs (code: 2)

-500 END

Others

The program will be executed from the starting program line after executing the final line of the
preceding program.
In above example I ine 10 of "PROG.-2" will be executed, after ending line 300 of the "PROG.-1 ".

100

Tape Notes

1. If you use a recorder other than Radio Shack's CTR-80A, you may have to remove the REM plug
before you are able to operate Fast-Forward and Rewind functions. Also, other difficulties may
arise with normal functions.

2. Always use only the highest quality tape for program and data storage (economy grade audio
type tape may not provide the proper characteristics for digital recordings). To insure best
results, use Radio Shack's C-20 Cassettes, especially made for recording computer programs.

3. Keep the tape heads and tape handling parts clean - use a cassette cleaner/degamnetizer tape to
keep everything clean.

4. Volume level can be very important when reading in data from the recorder; make slight adjust
ments as required to obtain error-free data transfer. A slight adjustment either up or down may
result in perfect results every time.

5. Tapes made on one recorder may not function well on another recorder (e.g. a recording made
with a Sony unit and played back on a CTR-80A may not function without errors). Use only
the same model recorder for both recording and playback (if possible, use the same unit).

6. Be sure all connections between the Pocket Computer and Cassette Interface are secure. And be
sure the connections between Interface and Recorder are secure and dirt-free.

7. If problems occur when using AC power for the recorder, use battery power instead (sometimes
the AC power connection also adds some "hum" to the signal which upsets proper digital
recordings).

8. Tone control - set to maximum treble (10).
9. Volume setting - for most Recorders from Radio Shack a setting between 4 and 10 should work

out well (use 7 and leave it there). Other Recorders may not have this same range; try 6 to 8. If
you consistenty have problems loading programs from cassette, adjust volume up or down slight
ly and try again.

We've included some sample programs for your own benefit and entertainment. They will give you
just a brief idea of the types of programs which can be run on your TRS-80 Pocket Computer.

NOTE: Please do not request special custom-written programs to be provided for your own
applications needs. Radio Shack does not have the facilities to provide such services.

101

(\

I

I

,

Notes for entering program listings:

1. Before entering program lines, set Computer to "PRO" (program) mode and enterOI][[J[y[J
~ to clear out any existing program(s).

2. Press ~ at the end of each program line. This automatically forces a colon to be added
after each program line (no need to add that colon).

3. If you want to add a blank space inside quote marks, you'll have to enter one (~ key).
However it is not necessary to add a space between commands which use two or more characters.

The following examples should help you

~---➔Numeric0

~---A colon will automatically be entered by the Computer directly behind each line
number (after you press ~).

' ' ,-....--➔ Press ~ key and then [y[] key.

I
No need to press ~ key.

~ Press ~ key, which enters the line into

1

the Computer's memory.

10: "A": PAUSE "MANNING"
20: INPUT "R = "; R, "H = "; H, "L= "; L, "N = "; N

30, I a H/L, Ca R \I/6)/N I

L P,es, 00 key and then

> Here you must press the ~ key.
A

G:J key.

r Use ~ key to enter this sign.

1 1

.-----...> Numeric 0

410: IF (ABS F>=IE-4)+(ABSG>=IE-4)<>OLET A=A+
F: B = B + G: PAUSE F, G: GOTO 400

420: GOSUB 9001 ~ -----➔
-) This indicates the letter O key.

4. After you enter the contents of the program list into the Computer and you execute the program,
set the Computer in the DEF mode.

102

2

4

6

B

9

10

Title BIORHYTHM '
[Formula]

The idea of biorhythm is that man's physical, emotional and intellectual conditions have a
rhythm or cycle, from the very day of his birth.

Physical (P): a cycle of 23 days

Emotional/Sensitivity (S): a cycle of 28 days

Intellect (I): a cycle of 33 days

The result of calculation with respect to date on which these conditions are the worst is as
follows:

P: 0, 11 or 12

S: 0, 14

I: 0, 16 or 17

Calculation can be made, however, only for date of birth on or after March 1, 1900.

[Example]

To find the biorhythm on 3rd of March, 1977 for one whose date of birth is 4th of February,
1954:

[Operation] (\

CLOAD 9 I I 9 ENTER.

Display: P: AFTER 1.5 (Means the date 1.5 days after the target date (March 3rd) is the
worst day for physical condition.

S:TODAY (Means the target date is the worst day for emotion/sensitivity.)

I: AFTER 3.5 (Means the date 3 .5 days after the target date is the worst for the
intellectual condition.)

Input Display Note Input Display Note

[SHFT] ~ BIRTHDAY? 11

I 95 4 ENTER] ? 12

2 ,ENTER I ? 13

4 ,ENTER[TARGET? -- - 14

I 97 7 :ENTER] ? 15

3 :ENTER1 ? 16
3 IENTERJ p AFTER 1.5 17

!ENTER] s TODAY 18

[ENTER] I AFTER 3.5 19
I SH FT! ~ 20

103

Title BIORHYTHM

Memory content

A 1 ✓

B 2 ✓

C 3 ✓ 10: "A":INPUT "BIRTHDAY ?",Y,M,D
, 20: GOSUB 500

D 4 Day 1'30: X=N

E 5 .40: "B":INPUT "TARGET ?",Y,M,D

I
50: GOSUB 500

F 6 60: P=N-X

G 7 70: AS:.="P" :8=23
80: GOSUB 540

H 8 90: Ai-="S" :8=28

I 9 ·100: GOSUB 51,0
110: AS="I":8=33

J 10 120: GOSUB 540 ,

K 11 130: END
500: IF M-3>=0LET H=M+1:GOTO 520

L 12 510: Y=Y-1 :M=13+M

M 13 520: N=INT (365.25*Y)+INT (30.6*M)+D
Month

530: RETURN

N 14 N 540: C=P-INT (P/B)*B:BEEP 2

'
0

550: IF C>B/2LET O=a-c :GOTO 59J
15 560: IF 8/ 2=CPR INT A'J.;" TODAY" :RETUflN

p 16 ✓ 5 70: IF C=OPH INT A$ i" TODAY":RETURN
580: Q=B/2-C

Q 17 ✓ ·590: PRINT AS;" AFTER" ;USING "./1 !+####. tJ"; ()
R 18 ,600: RETURN

337
5 19

T 20

u 21

V 22

w 23

X 24 ✓

y 25 Year '

z 26

- :

r
104

Title GUESS-NUMBER GAME

[Formula]

This program lets you guess a number which the Computer generates. The number could
be 1 to 4 digits.

When you guess correctly, the Computer beeps 5 times and the display shows "CON-
GRATULATION" together with trial number.

When you guess incorrectly, the display shows the following comments.

(In this case, Computer generated
2 6578 ABBC 4587 and your guess was 6578)

trial No. guess No. comments

A: number and position both are right
B: number is right but position is not right
C: neither number nor position is right

The sequence of the comments (ABBC) does not relate the positions of the number you
guessed.

[Operation]

At DEF Mode

N~ rn When executing this instruction, the Computer generates a 4 digit number.
N could be any number.

Guess number ~ If the number entered is more than 5 digits, a sound will beep twice
('

and display will show "EXCESSIVE INPUT". ..
In this case re-enter a 4-digit number.

Input Display Note Input Display Note

1 123456 11 ~ GUESS NUMBER=

2 ~ ~ GUESS NUMBER GAME 12 2607 ~ CONGRATULATION TRIAL= 5

3 GUESS NUMBER= 13 ~ GUESS NUMBER=

4 1 2 3 4 ~ 1 1234 BCCC 14 5678 ~ 1 5678 ACCC

5 ~ GUESS NUMBER= 15 / I
6 5 6 7 8 ~ 2 5678 ABCC 16 \ \
7 ~ GUESS NUMBER= 17))
8 9 0 1 2 ~ 3 9012 BBCC 18 I I

9 ~ GUESS NUMBER= 19

10 6072 ~ 4 6 0 7 2 BBBB 20

105

t Title GUESS-NUMBER GAME

Memory content

A 1 10: t=INT (A/10)
20: A(B)=A-C*10

B 2 Index 30: A=C

C
40: RETURN

3 SO: "A":AREAD F:U=O

D 4 Index 60: E=F:PAUSE "GUESS NUMBER GAME"
70: L=O:A=E+1234:A=A*~A

E 5 4 digits random No. •. 80: E=INT A-INT (A/ IE4) H4: A=E

F 6 Input data '90: FOR B=16TO 13STEP -1
100: GOSUB 10

G 7 110: NEXT B

H
120: INPUT "GUESS NUMBER =";F

8 No. of comment A 130: IF F>IE4BEEP 2:PAUSE "EXCESSIVE INPUT":

I 9 No. of comment B GOTO 120
..: : 140: U=F+U:L=L+1

J 10 '1 so: A=F: H=O :I=O

K 11 . 160: FOR B=20TO 17STEP -1
'170: GOSUB 10

L 12 Trail No. · 1 so: NEXT B I

M 13 A(13)
190: FOR B=17TO 20

· 200: FOR C=13TO 16

'
N 14 (

0

210: A=B-9:IF A(C)=A(B)LET H=H+1 :

)
C=16

0 15 Random No. 220: NEXT C

p 16 A(l6) · 230: NEXT B
240: FOR B=17TO 20

Q 17 A(l 7) Guess No. 250: C=B-4:A=B-9

R 18 (
260: IF A(C)=A(B)LET I=I+1 :H=H-1

270: NEXT B

s 19) .,280: IF E=FGOTO 320
- 290: V=I*10+H+SOO:GOSUB V

T 20 A(30) ,300: PRINT USING "### ";u us ING "######";

u 21 For random No.
F; II II;\.}$

. 310: GOTO 120
V 22 320: BEEP S :PRINT "CONG RA TULAT ION

w 23 For judgement
TRIAL=";USING "###" ;L

330: E=U+E:GOTO 70

X 24 340: END

y rsoo: W$=" CC CC": RETURN
25 '501: W$="BCCC": RETURN

z 26
7 502: W$="BBCC": RETURN

503: WS ="BBB C": RETURN
;· 504: W$ ="BBBB": RETURN
; 510: W$=" ACC C": RETURN

S 11 : W$ ="ABC C": RETURN
. 512: W$="ABBC" :RETURN
513: \.JS=" ABBS": RETURN
520: WS=" AAC C": RETURN
521: WS="AABC" :RETURN
522: 1./$=" AABB": RETURN
530: W$="AAAC" :RETURN ,.

~
,531: WS=" AAAB": RETURN -

106

Title IMPEDANCE IN A SERIES CIRCUIT

rFormula]

Impedance in a series circuit

R C L
Z= IZI =/R2 + (wL --

1
-) 2

C:J
w C

(.O.J

I wL---
~

0 = tan-I (w C) (0 J
R

.
(w L--1 -) Z=R+j

w C

[Example]

[L c 25
(mH J ,, Z = 310.5 (.n J

C = 10 C µF J 0 = -89.08 (0 J
i R = 5 (.n J X = 5

f = 50 (Hz J y = - 310 .5

~-'.Z=5-310.5j

(
[Operation]

C LOAD v' E I v' [ENTER I

Input Display Note Input Display Note

1 iSHFTI A L= 11

2 (L)25E-3 [tlTtR! C= 12

3 (C) lOE-6 [tlTtRi R= 13

4 (R)5 [tlTER F(HZ) = 14

5 (050 [ENTER; 15

6 X 5 16

7 I®~ y -310 .455 ... 17

8 [tlTER/ l: 310.496 ... 18

9 IEmR'. PHASE-89.077 ··· (0) 19

10 20

107

1
' Title IMPEDANCE IN A SERIES CIRCUIT

Memory content

A 1

B 2

C 3 C

l) 4 10: "A":DEGREE :INPUT "L=";L

E 5 20: INPUT "C=";C
30: INPUT "R=";R

F' 6 f
40: INPUT "F(HZ)=" ;F

G 7 SO: F=2*7l*F
60: L=L*F

H 8 70: C=C*F

I 9 ✓ 80: I=L-1/C
90: Z=f(R•R+I*I)

J 10 100: X=ACS CR/Z)

K 11 110: IF O>ILET X=-X
120: USING

L 12 L 130: PRINT "X",R

M 13 140: PRINT "Y" ,I
150: PRINT "Z",Z

N 14 160: PRINT "PHASE", X

t
0 15 170: ENO

172
p 16

Q 17

R 18 I<

s 19

T 20

u 21

V 22

w 23

X 24 Phase

y 25

z 26 z

f
108

Titre DAYS BETWEEN DATES

[Formula]

This program figures the number of days between two dates. Leap years are taken into account.

[Example]

From 10/5/1976 to 2/20/1977: 138 days

From 10/5/1976 to 11/15/1977: 406 days

[Operation]

CLOAD VH I V [ENTER)

! sill] ~

Reference year (aml

Reference month [ENTER)

Reference day [ENTER[

Appointed year [ENTER)

Appointed month [ENTER!

Appointed day [EITER) Number of days displayed
(6

[ENTER]

NOTE: To set a reference date, start operation from ~

Input Display Note Input Display Note
1 [sllf!j IA START YEAR= 11

2 1976)ENTER) MONTH= 12
3 10 [ENTER) DAY= 13

4 5 [ENTER! END YEAR= 14

5 I 977 [ijffR] MONTH= 15

6 2 [ENTER) DAY= 16

7 20 [ENTER) 17

8 DAYS 138 18
9 19
10 20

109

'
Title DAYS BETWEEN DATES I

I
Memory content

i

A 1

B 2

C 3

D 4 10: "A":Y=O
20: INPUT "START YEAR=";R,"MONTH=";S,"DAY="

E 5 ;r

F 6 30: INPUT "END YEAR="; U, "f10NTII="; V," D/1 Y="; I:
40: IF Y=1LET li=R+1925:GOTO 60

G 7 Month for SUB. 50: ll=R

H 8 Year for SUB. 60: G=S:I=T
70: GOSUB 500

I 9 Day for SUB. 80: J=I

J 90: IF Y=1LET H=U+1925:GOTO 110 10 No. of days I 100: H=U
K 11 110: G=V:I=\./

L 12 120: GOSU□ 500
130: X=I-J

M 13 140: PRINT "DAYS",X
150: GOTO 30

N 14 500: IF G-3>=0LET Z=-(G-3)*30.6-.5:GOSUO 600

t
0 15 : I=I-Z :GOTO 530

510: H=H-1 p 16 520: Z=(-(G-3)-12)*30.6-.5:GOSUC 600:I=I-Z
Q 17 530: Z=H*36S.25:GOSUB 600:I=l+Z

540: Z=H/100:GOSUB 600:I=I-Z
R 18 Start year 550: Z=H/400:GOSUB 600:I=I+Z
s 19 Start month 560: I=I-307:RETURN

600: X=INT ABS Z:Z=SGN Z*X:RETURN
T 20 Start day 385

u 21 End year

V 22 End month

w 23 End day

X 24 No. of days wanted

y 25

z 26 ✓

110

Title RANDOM NUMBERS

[Formula]

Generate random numbers according to the congruence method.

. 23xn 8
Xn+I = 23xn-int(1os+1) X(I0 +I)

Xo is an arbitrary 8-digit integer.

[Example]

Clear all memories, and generate ten random numbers with the initial value = 0.

[Operation]

CLOAD VB! Iv :!!!!_Rl

Note: Make sure memory X is loaded with no character. If the memory is loaded with a
character, an error will occur.

Input Display Note Input Display Note

1 [SHFTI I!] INITIAL VALUE= 11 [ENTER 9. 13784262
2 omff NUMBER= 12 ENTER 10. 17038023
3 l O 'ENTER[1 10100381 13

4 [ENTER[2 32308761 14

5 [ENTER' 3 43101496 15

6 [ENTER! 4 91334399 16

7 !ENTER] 5 691156 17

8 /ENTER! 6 I 5896588 18

9 /ENTER! 7 65621521 19

10 /ENTER! 8 9294968 20

111

'
Title RANDOM NUMBERS

Memory content

A 1 i

B 2 23x
10: "A":INPUT "INITIAL VALUE =";z C 3 20: INPUT "NUMBER=";N

D 4 30: X=ABS (439147+X+Z)
40: E=E8+1

E 5 108 +1 50: FOR A=1TO N
F 6 60: B=23*X

70: X=B-INT (B/E)*E
G 7 80: BEEP 2:PRINT A,X

H 8 90: NEXT A
100: END

I 9 121

J 10

K 11

L 12

M 13

N 14 n

I
0 15

p 16

Q 17 ',

R 18

s 19

T 20

u 21

V 22

w 23

X 24

y 25

z 26

112

Title NORMAL DISTRIBUTION AND PERCENTILE (

[Formula]

Determine the normal distribution function </)(x) and its inverse function (percentile)
according to Basting's best approximate equation.

• </)(x)

Suppose, ¢ (x) = f.!00 ¢ t d X

1 ,.2

~ ¢1=~e -7

1 t=--
l+px

we obtain,

¢ (x) = 1-¢1 Cc1t+c2 t 2+c3t 3+c4 t 4+c5 t 5)

P = o. 2316419 c1= 0.31938153

Cz = - 0. 356563782 C3= 1. 78147937

C4 = - 1. 821255978 c5= l.330274429

• Percentile

x=~ / ~
co+c1x+c2x2

tQ =ax- + 2+ 3 tQ 1 +d1X d2X d3X

Co= 2. 515517 d 1 = 1. 432788

C1 = 0. 802853 d2= 0. 189269

Cz = 0. 010328 d3= 0. 00138

[Example] <p(x)·········X=2; percentile•········· Q = 0.05

[Operation] CLOAD '7B3'7 [ENTER:

Input Display Note Input Display Note

1 2 IJHJll ~ p 9.77249 IE-01 ¢(x) 11

2 12

3 13

4 0. 05 (Jffil ~ TQ I. 645361125 tQ 14

5 15

6 16

7 17

8 18
g 19

10 20

113

'
Title NORMAL DISTRIBUTION AND PERCENTILE

Memory content

A 1

B 2

C 3 10: "A":AREAD Z

D 4 20: Y=1/(1+.2316419*Z)
30: A=.31938153:B=-.356563782

E 5 40: C=1.78147937:D=1.330274429

F 6 SO: E=-1.821255978
60: F=C+Y*(D*Y+E):P=1-EXP (-.S*Z*Z)/✓(2*~)*

G 7 Y* (A+Y* (B+Y* F))

H 8
70: BEEP 2 :PRINT "P" ,P
80: END

I 9 90: "B":AREAD Z

J 10
100: Y=[LN (1/Z/Z)
110: A=2.515517:B=.802853:C=.010328

K 11 120: D=1.432788:E=.189269:F=.00138

L
130: Q=Y-(A+Y*(B+C*Y))/(1+Y*(D+Y*(E+F*Y)))

12 140: BEEP 2:PRINT "TQ",Q
M 13 150: END

319
N 14

I
0 15 ·,

p 16 p

Q 17 TQ

R 18

s 19

T 20

u 21

V 22

w 23

X 24

y 25 working area

z 26 Input area

,
114

YOUR OWN PROGRAM

Title
(

-·

Input Display Note Input Display Note

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18
9 19

ID 20
115

'
Title

Memory content Line number Statements

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

I 9

J 10

K 11

L 12

M 13

N 14

0 15

I p 16

Q 17

R 18

s 19

T 20

u 21

V 22

w 23

X 24

y 25

z 26

116

YOUR OWN PROGRAM

Title
(

2(
•c

Input Display Note Input Display Note

1 11

2 12

3 13

4 14

5 15

6 16

7 17

8 18

9 19

10 20

117

Title

Memory content Line number Statements

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

I 9

J 10

K 11

L 12

M 13

N 14

0 15

p 16

Q 17

R 18

s 19

T 20

u 21

V 22

w 23

X 24

V 25

z 26

118

A

B

C

D

Page

Absolute Value (ABS) . 23
Addition and Subtraction . 18
Angle Conversions (DMS, DEG) • • • 22
Angular Symbol . 16
Appendix. 87
AREAD Statement ... 69
Arithmetic Calculation. 18
Arithmetic Operator . 18

Battery Indicator. 16
Battery Replacement . 89
BEEP Statement ... 68

Calculations with Parentheses . 20
CHAIN Statement .. 76
Character Variable. 45
Checking Reserve Programs .. 83
Checking Stored Programs. 36
Checking the Program (after CLOAD1) 98
CLEAR Statement .. 68
CLOAD Statement ... 75
CLOAD? Statement ... 75

CLOADl Statement ... 96 ~6

Command Statement 70 '110

Computation Range ... · 17
Configuration of Reserve Programs 84
Connecting the Cassette Interface .. 90
Connecting the Cassette Interface to a Tape Recorder 92
Connecting the Pocket Competer to the Cassette Interface 91
CONT Command ... 71
Correction of Reserve Programs ... 83
CSAVE Statement .. 74
Cursor .. 14
Cursor positioning .. 28

DEBUG Command ... 71
Debugging Programs ... 41
Definable Mode (DEF) ... 13
Defined Progeam ... 42
DEGREE Statement .. 69
Deleting Lines ... 39
Deleting Reserve Programs .. 84
Display ... 14
Display System. 16

119

E

F

G

H

J

K

L

M

Editing Porgrams on Magnetic Tape . 95
Editing Expressions ... 26
END Statement. ... 68
Error Codes .. 85
Executing Programs. 39
Execution of the Program (after CLOAD1) 99
Exponential Function (EXP) ... 22

Features • • . • • • • • • • • • • • • • · • • • • ·
Fixed Memory 46
Flexible Memory .. . 46
Flow Chart • . • • • • • • • . • • • • • • 67
FOR Statement 64
Functions • . • . • • • • • • • • • • • • • · • • • · • · • · · 3
Functions of Keys 9

GOTO Statement 59
GOSUB Statement 62
GRAD Statement 69

IF Statement .. . 60
Indirect Designation .. . 47

INPUT# ·········· · · · · · · · · · · · · · · · · · 79
INPUT Statement · · . · · · · 52
Inputting Data 17
Inputting to Variables .. . 48
Inserting Lines 38
Integer (I NT) .. • . • .. 23
Introduction
Inverse Trigonometric Functions (ASN, ACS, ATN) 21

Keyboard 8

Label 35
LET Statement 51
Levels of Pending Operation .. . 29
Line .. . 35
Line Number .. . 35
LIST Command .. . 72
Logarithmic functions (LN LOG) 22
Loading from the Magnetic Tape 93
Logic Functions .. . 24
Logic Operator ... • . • ... • 18

Manual Calculations .. • • 18
MEM Command .. . 73
Memory Calculations 25
Mode 13
Mode Symbol · .. 16

120

\
#,

\ I I ~
I j ..

N

0

p

Q

R

s

Name Label ·. 1 -
NEW Command . 73
NEXT Statement. 64
Number of input Characters . 16
Numerical Variable . 45

Operating the Cassette interfece and recorder. 93
Organization of Program Memory. 36

Partial correction. 37
PAUSE Statement. 57
Power Calculations . 20
PRINT~ Statement .. 78
PRINT Statement .. 54
Priority of Calculations. 29
Program Correction . 37
Programmed Calculations . 31
Program mode {PRO) .. 13
Program Memory. 47
Program Statement . 51
Prompt Symbol. 14
Program Verification .. 94

RADIAN Statement .. . 69
Rapid Debugging .. . 41
Recall Functions .. . 26
Recalling the Contents of Variables 49
Recording onto Magnetic Tape 93
REM Statement .. . 70
Reservable Keys .. . 80
Reserve Memory for Reservable Keys 80
Reserve Program Mode {RESERVE) 13
RETURN Statement 62
RUN Command .. . 70
RUN Mode {RUN) 13

Scientific Functions .. . 21
Second Functions 13
Shift Symbol .. . 16
Sign Function (SGN) 23
Specifications .. . 88
Specifying Variables .. . 46
Square Roots .. . 22
Statement .. . 4
Statement for optional cassette interface • • .. 74
Steps .. . 35
STOP Statement .. . 68

121

-

•

In

T

u

V

w

X

y

z

Table of Error Codes .. 86
Table of Functions and Statements. 3
Tape Notes .. -101
Trigonometric Function (SIN, COS, TAN) 21

USING Statement .. 57

Variables . 45

Writing Programs. 34

122

-

•

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack war
rants to the original purchaser that the computer hardware described
herein shall be free from defects in material and workmanship under
normal use and service. This warranty is only applicable to purchases
from Radio Shack company-owned retail outlets and through duly
authorized franchisees and dealers. The warranty shall be void if this
unit's case or cabinet is opened or if the unit is altered or modified.
During this period, if a defect should occur, the product must be re
turned to a Radio Shack store or dealer for repair, and proof of pur
chase must be presented. Purchaser's sole and exclusive remedy in the
event of defect is expressly limited to the correction of the defect by
adjustment, repair or replacement at Radio Shack's election and sole
expense, except there shall be no obligation to replace or repair items
which by their nature are expendable. No representation or other affir
mation of fact, including, but not limited to, statements regarding
capacity, suitability for use, or performance of the equipment, shall
be or be deemed to be a warranty or representation by Radio Shack,
for any purpose, nor give rise to any liability or obligation of Radio
Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRAN
TIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE
FOR LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT
OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACI< A DIVISION OF TANDY CORPORATION

AUSTRALIA

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

BELGIUM U. K.

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

PARC INOUSTRIEL OE NANINNE
5140 NANINNE

BILSTON ROAD WEONESBURY
WEST MIDLANDS WS10 7JN

1A2 PRINTED IN JAPAN

